lexical_parse_float/slow.rs
1//! Slow, fallback cases where we cannot unambiguously round a float.
2//!
3//! This occurs when we cannot determine the exact representation using
4//! both the fast path (native) cases nor the Lemire/Bellerophon algorithms,
5//! and therefore must fallback to a slow, arbitrary-precision representation.
6
7#![doc(hidden)]
8
9#[cfg(feature = "radix")]
10use crate::bigint::Bigfloat;
11use crate::bigint::{Bigint, Limb, LIMB_BITS};
12use crate::float::{extended_to_float, ExtendedFloat80, RawFloat};
13use crate::limits::{u32_power_limit, u64_power_limit};
14use crate::number::Number;
15use crate::shared;
16use core::cmp;
17#[cfg(not(feature = "compact"))]
18use lexical_parse_integer::algorithm;
19use lexical_util::digit::char_to_valid_digit_const;
20#[cfg(feature = "radix")]
21use lexical_util::digit::digit_to_char_const;
22use lexical_util::format::NumberFormat;
23use lexical_util::iterator::{AsBytes, BytesIter};
24use lexical_util::num::{AsPrimitive, Integer};
25
26// ALGORITHM
27// ---------
28
29/// Parse the significant digits and biased, binary exponent of a float.
30///
31/// This is a fallback algorithm that uses a big-integer representation
32/// of the float, and therefore is considerably slower than faster
33/// approximations. However, it will always determine how to round
34/// the significant digits to the nearest machine float, allowing
35/// use to handle near half-way cases.
36///
37/// Near half-way cases are halfway between two consecutive machine floats.
38/// For example, the float `16777217.0` has a bitwise representation of
39/// `100000000000000000000000 1`. Rounding to a single-precision float,
40/// the trailing `1` is truncated. Using round-nearest, tie-even, any
41/// value above `16777217.0` must be rounded up to `16777218.0`, while
42/// any value before or equal to `16777217.0` must be rounded down
43/// to `16777216.0`. These near-halfway conversions therefore may require
44/// a large number of digits to unambiguously determine how to round.
45#[inline]
46pub fn slow_radix<F: RawFloat, const FORMAT: u128>(
47 num: Number,
48 fp: ExtendedFloat80,
49) -> ExtendedFloat80 {
50 // Ensure our preconditions are valid:
51 // 1. The significant digits are not shifted into place.
52 debug_assert!(fp.mant & (1 << 63) != 0);
53
54 let format = NumberFormat::<{ FORMAT }> {};
55
56 // This assumes the sign bit has already been parsed, and we're
57 // starting with the integer digits, and the float format has been
58 // correctly validated.
59 let sci_exp = scientific_exponent::<FORMAT>(&num);
60
61 // We have 3 major algorithms we use for this:
62 // 1. An algorithm with a finite number of digits and a positive exponent.
63 // 2. An algorithm with a finite number of digits and a negative exponent.
64 // 3. A fallback algorithm with a non-finite number of digits.
65
66 // In order for a float in radix `b` with a finite number of digits
67 // to have a finite representation in radix `y`, `b` should divide
68 // an integer power of `y`. This means for binary, all even radixes
69 // have finite representations, and all odd ones do not.
70 #[cfg(feature = "radix")]
71 {
72 if let Some(max_digits) = F::max_digits(format.radix()) {
73 // Can use our finite number of digit algorithm.
74 digit_comp::<F, FORMAT>(num, fp, sci_exp, max_digits)
75 } else {
76 // Fallback to infinite digits.
77 byte_comp::<F, FORMAT>(num, fp, sci_exp)
78 }
79 }
80
81 #[cfg(not(feature = "radix"))]
82 {
83 // Can use our finite number of digit algorithm.
84 let max_digits = F::max_digits(format.radix()).unwrap();
85 digit_comp::<F, FORMAT>(num, fp, sci_exp, max_digits)
86 }
87}
88
89/// Algorithm that generates the mantissa for a finite representation.
90///
91/// For a positive exponent relative to the significant digits, this
92/// is just a multiplication by an exponent power. For a negative
93/// exponent relative to the significant digits, we scale the real
94/// digits to the theoretical digits for `b` and determine if we
95/// need to round-up.
96#[inline]
97pub fn digit_comp<F: RawFloat, const FORMAT: u128>(
98 num: Number,
99 fp: ExtendedFloat80,
100 sci_exp: i32,
101 max_digits: usize,
102) -> ExtendedFloat80 {
103 let (bigmant, digits) = parse_mantissa::<FORMAT>(num, max_digits);
104 // This can't underflow, since `digits` is at most `max_digits`.
105 let exponent = sci_exp + 1 - digits as i32;
106 if exponent >= 0 {
107 positive_digit_comp::<F, FORMAT>(bigmant, exponent)
108 } else {
109 negative_digit_comp::<F, FORMAT>(bigmant, fp, exponent)
110 }
111}
112
113/// Generate the significant digits with a positive exponent relative to mantissa.
114pub fn positive_digit_comp<F: RawFloat, const FORMAT: u128>(
115 mut bigmant: Bigint,
116 exponent: i32,
117) -> ExtendedFloat80 {
118 let format = NumberFormat::<{ FORMAT }> {};
119
120 // Simple, we just need to multiply by the power of the radix.
121 // Now, we can calculate the mantissa and the exponent from this.
122 // The binary exponent is the binary exponent for the mantissa
123 // shifted to the hidden bit.
124 bigmant.pow(format.radix(), exponent as u32).unwrap();
125
126 // Get the exact representation of the float from the big integer.
127 // hi64 checks **all** the remaining bits after the mantissa,
128 // so it will check if **any** truncated digits exist.
129 let (mant, is_truncated) = bigmant.hi64();
130 let exp = bigmant.bit_length() as i32 - 64 + F::EXPONENT_BIAS;
131 let mut fp = ExtendedFloat80 {
132 mant,
133 exp,
134 };
135
136 // Shift the digits into position and determine if we need to round-up.
137 shared::round::<F, _>(&mut fp, |f, s| {
138 shared::round_nearest_tie_even(f, s, |is_odd, is_halfway, is_above| {
139 is_above || (is_halfway && is_truncated) || (is_odd && is_halfway)
140 });
141 });
142 fp
143}
144
145/// Generate the significant digits with a negative exponent relative to mantissa.
146///
147/// This algorithm is quite simple: we have the significant digits `m1 * b^N1`,
148/// where `m1` is the bigint mantissa, `b` is the radix, and `N1` is the radix
149/// exponent. We then calculate the theoretical representation of `b+h`, which
150/// is `m2 * 2^N2`, where `m2` is the bigint mantissa and `N2` is the binary
151/// exponent. If we had infinite, efficient floating precision, this would be
152/// equal to `m1 / b^-N1` and then compare it to `m2 * 2^N2`.
153///
154/// Since we cannot divide and keep precision, we must multiply the other:
155/// if we want to do `m1 / b^-N1 >= m2 * 2^N2`, we can do
156/// `m1 >= m2 * b^-N1 * 2^N2` Going to the decimal case, we can show and example
157/// and simplify this further: `m1 >= m2 * 2^N2 * 10^-N1`. Since we can remove
158/// a power-of-two, this is `m1 >= m2 * 2^(N2 - N1) * 5^-N1`. Therefore, if
159/// `N2 - N1 > 0`, we need have `m1 >= m2 * 2^(N2 - N1) * 5^-N1`, otherwise,
160/// we have `m1 * 2^(N1 - N2) >= m2 * 5^-N1`, where the resulting exponents
161/// are all positive.
162///
163/// This allows us to compare both floats using integers efficiently
164/// without any loss of precision.
165#[allow(clippy::comparison_chain)]
166pub fn negative_digit_comp<F: RawFloat, const FORMAT: u128>(
167 bigmant: Bigint,
168 mut fp: ExtendedFloat80,
169 exponent: i32,
170) -> ExtendedFloat80 {
171 // Ensure our preconditions are valid:
172 // 1. The significant digits are not shifted into place.
173 debug_assert!(fp.mant & (1 << 63) != 0);
174
175 let format = NumberFormat::<FORMAT> {};
176 let radix = format.radix();
177
178 // Get the significant digits and radix exponent for the real digits.
179 let mut real_digits = bigmant;
180 let real_exp = exponent;
181 debug_assert!(real_exp < 0);
182
183 // Round down our extended-precision float and calculate `b`.
184 let mut b = fp;
185 shared::round::<F, _>(&mut b, shared::round_down);
186 let b = extended_to_float::<F>(b);
187
188 // Get the significant digits and the binary exponent for `b+h`.
189 let theor = bh(b);
190 let mut theor_digits = Bigint::from_u64(theor.mant);
191 let theor_exp = theor.exp;
192
193 // We need to scale the real digits and `b+h` digits to be the same
194 // order. We currently have `real_exp`, in `radix`, that needs to be
195 // shifted to `theor_digits` (since it is negative), and `theor_exp`
196 // to either `theor_digits` or `real_digits` as a power of 2 (since it
197 // may be positive or negative). Try to remove as many powers of 2
198 // as possible. All values are relative to `theor_digits`, that is,
199 // reflect the power you need to multiply `theor_digits` by.
200 let (binary_exp, halfradix_exp, radix_exp) = match radix.is_even() {
201 // Can remove a power-of-two.
202 // Both are on opposite-sides of equation, can factor out a
203 // power of two.
204 //
205 // Example: 10^-10, 2^-10 -> ( 0, 10, 0)
206 // Example: 10^-10, 2^-15 -> (-5, 10, 0)
207 // Example: 10^-10, 2^-5 -> ( 5, 10, 0)
208 // Example: 10^-10, 2^5 -> (15, 10, 0)
209 true => (theor_exp - real_exp, -real_exp, 0),
210 // Cannot remove a power-of-two.
211 false => (theor_exp, 0, -real_exp),
212 };
213
214 if halfradix_exp != 0 {
215 theor_digits.pow(radix / 2, halfradix_exp as u32).unwrap();
216 }
217 if radix_exp != 0 {
218 theor_digits.pow(radix, radix_exp as u32).unwrap();
219 }
220 if binary_exp > 0 {
221 theor_digits.pow(2, binary_exp as u32).unwrap();
222 } else if binary_exp < 0 {
223 real_digits.pow(2, (-binary_exp) as u32).unwrap();
224 }
225
226 // Compare our theoretical and real digits and round nearest, tie even.
227 let ord = real_digits.data.cmp(&theor_digits.data);
228 shared::round::<F, _>(&mut fp, |f, s| {
229 shared::round_nearest_tie_even(f, s, |is_odd, _, _| {
230 // Can ignore `is_halfway` and `is_above`, since those were
231 // calculates using less significant digits.
232 match ord {
233 cmp::Ordering::Greater => true,
234 cmp::Ordering::Less => false,
235 cmp::Ordering::Equal if is_odd => true,
236 cmp::Ordering::Equal => false,
237 }
238 });
239 });
240 fp
241}
242
243/// Try to parse 8 digits at a time.
244#[cfg(not(feature = "compact"))]
245macro_rules! try_parse_8digits {
246 (
247 $format:ident,
248 $iter:ident,
249 $value:ident,
250 $count:ident,
251 $counter:ident,
252 $step:ident,
253 $max_digits:ident
254 ) => {{
255 let format = NumberFormat::<$format> {};
256 let radix = format.radix() as Limb;
257
258 // Try 8-digit optimizations.
259 if can_try_parse_8digits!($iter, radix) {
260 let radix2 = radix.wrapping_mul(radix);
261 let radix4 = radix2.wrapping_mul(radix2);
262 let radix8 = radix4.wrapping_mul(radix4);
263
264 while $step - $counter >= 8 && $max_digits - $count >= 8 {
265 if let Some(v) = algorithm::try_parse_8digits::<Limb, _, FORMAT>(&mut $iter) {
266 $value = $value.wrapping_mul(radix8).wrapping_add(v);
267 $counter += 8;
268 $count += 8;
269 } else {
270 break;
271 }
272 }
273 }
274 }};
275}
276
277/// Add a digit to the temporary value.
278macro_rules! add_digit {
279 ($c:ident, $radix:ident, $value:ident, $counter:ident, $count:ident) => {{
280 let digit = char_to_valid_digit_const($c, $radix);
281 $value *= $radix as Limb;
282 $value += digit as Limb;
283
284 // Increment our counters.
285 $counter += 1;
286 $count += 1;
287 }};
288}
289
290/// Add a temporary value to our mantissa.
291macro_rules! add_temporary {
292 // Multiply by the small power and add the native value.
293 (@mul $result:ident, $power:expr, $value:expr) => {
294 $result.data.mul_small($power).unwrap();
295 $result.data.add_small($value).unwrap();
296 };
297
298 // Add a temporary where we won't read the counter results internally.
299 //
300 // # Safety
301 //
302 // Safe is `counter <= step`, or smaller than the table size.
303 (@end $format:ident, $result:ident, $counter:ident, $value:ident) => {
304 if $counter != 0 {
305 // SAFETY: safe, since `counter <= step`, or smaller than the table size.
306 let small_power = unsafe { f64::int_pow_fast_path($counter, $format.radix()) };
307 add_temporary!(@mul $result, small_power as Limb, $value);
308 }
309 };
310
311 // Add the maximum native value.
312 (@max $format:ident, $result:ident, $counter:ident, $value:ident, $max:ident) => {
313 add_temporary!(@mul $result, $max, $value);
314 $counter = 0;
315 $value = 0;
316 };
317}
318
319/// Round-up a truncated value.
320macro_rules! round_up_truncated {
321 ($format:ident, $result:ident, $count:ident) => {{
322 // Need to round-up.
323 // Can't just add 1, since this can accidentally round-up
324 // values to a halfway point, which can cause invalid results.
325 add_temporary!(@mul $result, $format.radix() as Limb, 1);
326 $count += 1;
327 }};
328}
329
330/// Check and round-up the fraction if any non-zero digits exist.
331macro_rules! round_up_nonzero {
332 ($format:ident, $iter:expr, $result:ident, $count:ident) => {{
333 // NOTE: All digits must be valid.
334 let mut iter = $iter;
335
336 // First try reading 8-digits at a time.
337 if iter.is_contiguous() {
338 while let Some(value) = iter.read::<u64>() {
339 // SAFETY: safe since we have at least 8 bytes in the buffer.
340 unsafe { iter.step_by_unchecked(8) };
341 if value != 0x3030_3030_3030_3030 {
342 // Have non-zero digits, exit early.
343 round_up_truncated!($format, $result, $count);
344 return ($result, $count);
345 }
346 }
347 }
348
349 for &digit in iter {
350 if digit != b'0' {
351 round_up_truncated!($format, $result, $count);
352 return ($result, $count);
353 }
354 }
355 }};
356}
357
358/// Parse the full mantissa into a big integer.
359///
360/// Returns the parsed mantissa and the number of digits in the mantissa.
361/// The max digits is the maximum number of digits plus one.
362pub fn parse_mantissa<const FORMAT: u128>(num: Number, max_digits: usize) -> (Bigint, usize) {
363 let format = NumberFormat::<FORMAT> {};
364 let radix = format.radix();
365
366 // Iteratively process all the data in the mantissa.
367 // We do this via small, intermediate values which once we reach
368 // the maximum number of digits we can process without overflow,
369 // we add the temporary to the big integer.
370 let mut counter: usize = 0;
371 let mut count: usize = 0;
372 let mut value: Limb = 0;
373 let mut result = Bigint::new();
374
375 // Now use our pre-computed small powers iteratively.
376 let step = if LIMB_BITS == 32 {
377 u32_power_limit(format.radix())
378 } else {
379 u64_power_limit(format.radix())
380 } as usize;
381 let max_native = (format.radix() as Limb).pow(step as u32);
382
383 // Process the integer digits.
384 let mut integer = num.integer.bytes::<FORMAT>();
385 let mut integer_iter = integer.integer_iter();
386 integer_iter.skip_zeros();
387 'integer: loop {
388 #[cfg(not(feature = "compact"))]
389 try_parse_8digits!(FORMAT, integer_iter, value, count, counter, step, max_digits);
390
391 // Parse a digit at a time, until we reach step.
392 while counter < step && count < max_digits {
393 if let Some(&c) = integer_iter.next() {
394 add_digit!(c, radix, value, counter, count);
395 } else {
396 break 'integer;
397 }
398 }
399
400 // Check if we've exhausted our max digits.
401 if count == max_digits {
402 // Need to check if we're truncated, and round-up accordingly.
403 // SAFETY: safe since `counter <= step`.
404 add_temporary!(@end format, result, counter, value);
405 round_up_nonzero!(format, integer_iter, result, count);
406 if let Some(fraction) = num.fraction {
407 let mut fraction = fraction.bytes::<FORMAT>();
408 round_up_nonzero!(format, fraction.fraction_iter(), result, count)
409 }
410 return (result, count);
411 } else {
412 // Add our temporary from the loop.
413 // SAFETY: safe since `counter <= step`.
414 add_temporary!(@max format, result, counter, value, max_native);
415 }
416 }
417
418 // Process the fraction digits.
419 if let Some(fraction) = num.fraction {
420 let mut fraction = fraction.bytes::<FORMAT>();
421 let mut fraction_iter = fraction.integer_iter();
422 if count == 0 {
423 // No digits added yet, can skip leading fraction zeros too.
424 fraction_iter.skip_zeros();
425 }
426 'fraction: loop {
427 #[cfg(not(feature = "compact"))]
428 try_parse_8digits!(FORMAT, fraction_iter, value, count, counter, step, max_digits);
429
430 // Parse a digit at a time, until we reach step.
431 while counter < step && count < max_digits {
432 if let Some(&c) = fraction_iter.next() {
433 add_digit!(c, radix, value, counter, count);
434 } else {
435 break 'fraction;
436 }
437 }
438
439 // Check if we've exhausted our max digits.
440 if count == max_digits {
441 // SAFETY: safe since `counter <= step`.
442 add_temporary!(@end format, result, counter, value);
443 round_up_nonzero!(format, fraction_iter, result, count);
444 return (result, count);
445 } else {
446 // Add our temporary from the loop.
447 // SAFETY: safe since `counter <= step`.
448 add_temporary!(@max format, result, counter, value, max_native);
449 }
450 }
451 }
452
453 // We will always have a remainder, as long as we entered the loop
454 // once, or counter % step is 0.
455 // SAFETY: safe since `counter <= step`.
456 add_temporary!(@end format, result, counter, value);
457
458 (result, count)
459}
460
461/// Compare actual integer digits to the theoretical digits.
462#[cfg(feature = "radix")]
463macro_rules! integer_compare {
464 ($iter:ident, $num:ident, $den:ident, $radix:ident) => {{
465 // Compare the integer digits.
466 while !$num.data.is_empty() {
467 // All digits **must** be valid.
468 let actual = match $iter.next() {
469 Some(&v) => v,
470 // Could have hit the decimal point.
471 _ => break,
472 };
473 let rem = $num.data.quorem(&$den.data) as u32;
474 let expected = digit_to_char_const(rem, $radix);
475 $num.data.mul_small($radix as Limb).unwrap();
476 if actual < expected {
477 return cmp::Ordering::Less;
478 } else if actual > expected {
479 return cmp::Ordering::Greater;
480 }
481 }
482
483 // Still have integer digits, check if any are non-zero.
484 if $num.data.is_empty() {
485 for &digit in $iter {
486 if digit != b'0' {
487 return cmp::Ordering::Greater;
488 }
489 }
490 }
491 }};
492}
493
494/// Compare actual fraction digits to the theoretical digits.
495#[cfg(feature = "radix")]
496macro_rules! fraction_compare {
497 ($iter:ident, $num:ident, $den:ident, $radix:ident) => {{
498 // Compare the fraction digits.
499 // We can only be here if we hit a decimal point.
500 while !$num.data.is_empty() {
501 // All digits **must** be valid.
502 let actual = match $iter.next() {
503 Some(&v) => v,
504 // No more actual digits, or hit the exponent.
505 _ => return cmp::Ordering::Less,
506 };
507 let rem = $num.data.quorem(&$den.data) as u32;
508 let expected = digit_to_char_const(rem, $radix);
509 $num.data.mul_small($radix as Limb).unwrap();
510 if actual < expected {
511 return cmp::Ordering::Less;
512 } else if actual > expected {
513 return cmp::Ordering::Greater;
514 }
515 }
516
517 // Still have fraction digits, check if any are non-zero.
518 for &digit in $iter {
519 if digit != b'0' {
520 return cmp::Ordering::Greater;
521 }
522 }
523 }};
524}
525
526/// Compare theoretical digits to halfway point from theoretical digits.
527///
528/// Generates a float representing the halfway point, and generates
529/// theoretical digits as bytes, and compares the generated digits to
530/// the actual input.
531///
532/// Compares the known string to theoretical digits generated on the
533/// fly for `b+h`, where a string representation of a float is between
534/// `b` and `b+u`, where `b+u` is 1 unit in the least-precision. Therefore,
535/// the string must be close to `b+h`.
536///
537/// Adapted from "Bigcomp: Deciding Truncated, Near Halfway Conversions",
538/// available [here](https://www.exploringbinary.com/bigcomp-deciding-truncated-near-halfway-conversions/).
539#[cfg(feature = "radix")]
540#[allow(clippy::comparison_chain)]
541pub fn byte_comp<F: RawFloat, const FORMAT: u128>(
542 number: Number,
543 mut fp: ExtendedFloat80,
544 sci_exp: i32,
545) -> ExtendedFloat80 {
546 // Ensure our preconditions are valid:
547 // 1. The significant digits are not shifted into place.
548 debug_assert!(fp.mant & (1 << 63) != 0);
549
550 let format = NumberFormat::<FORMAT> {};
551
552 // Round down our extended-precision float and calculate `b`.
553 let mut b = fp;
554 shared::round::<F, _>(&mut b, shared::round_down);
555 let b = extended_to_float::<F>(b);
556
557 // Calculate `b+h` to create a ratio for our theoretical digits.
558 let theor = Bigfloat::from_float(bh::<F>(b));
559
560 // Now, create a scaling factor for the digit count.
561 let mut factor = Bigfloat::from_u32(1);
562 factor.pow(format.radix(), sci_exp.unsigned_abs()).unwrap();
563 let mut num: Bigfloat;
564 let mut den: Bigfloat;
565
566 if sci_exp < 0 {
567 // Need to have the basen factor be the numerator, and the fp
568 // be the denominator. Since we assumed that theor was the numerator,
569 // if it's the denominator, we need to multiply it into the numerator.
570 num = factor;
571 num.data *= &theor.data;
572 den = Bigfloat::from_u32(1);
573 den.exp = -theor.exp;
574 } else {
575 num = theor;
576 den = factor;
577 }
578
579 // Scale the denominator so it has the number of bits
580 // in the radix as the number of leading zeros.
581 let wlz = integral_binary_factor(format.radix());
582 let nlz = den.leading_zeros().wrapping_sub(wlz) & (32 - 1);
583 if nlz != 0 {
584 den.shl_bits(nlz as usize).unwrap();
585 den.exp -= nlz as i32;
586 }
587
588 // Need to scale the numerator or denominator to the same value.
589 // We don't want to shift the denominator, so...
590 let diff = den.exp - num.exp;
591 let shift = diff.unsigned_abs() as usize;
592 if diff < 0 {
593 // Need to shift the numerator left.
594 num.shl(shift).unwrap();
595 num.exp -= shift as i32;
596 } else if diff > 0 {
597 // Need to shift denominator left, go by a power of LIMB_BITS.
598 // After this, the numerator will be non-normalized, and the
599 // denominator will be normalized. We need to add one to the
600 // quotient,since we're calculating the ceiling of the divmod.
601 let (q, r) = shift.ceil_divmod(LIMB_BITS);
602 let r = -r;
603 if r != 0 {
604 num.shl_bits(r as usize).unwrap();
605 num.exp -= r;
606 }
607 if q != 0 {
608 den.shl_limbs(q).unwrap();
609 den.exp -= LIMB_BITS as i32 * q as i32;
610 }
611 }
612
613 // Compare our theoretical and real digits and round nearest, tie even.
614 let ord = compare_bytes::<FORMAT>(number, num, den);
615 shared::round::<F, _>(&mut fp, |f, s| {
616 shared::round_nearest_tie_even(f, s, |is_odd, _, _| {
617 // Can ignore `is_halfway` and `is_above`, since those were
618 // calculates using less significant digits.
619 match ord {
620 cmp::Ordering::Greater => true,
621 cmp::Ordering::Less => false,
622 cmp::Ordering::Equal if is_odd => true,
623 cmp::Ordering::Equal => false,
624 }
625 });
626 });
627 fp
628}
629
630/// Compare digits between the generated values the ratio and the actual view.
631#[cfg(feature = "radix")]
632pub fn compare_bytes<const FORMAT: u128>(
633 number: Number,
634 mut num: Bigfloat,
635 den: Bigfloat,
636) -> cmp::Ordering {
637 let format = NumberFormat::<FORMAT> {};
638 let radix = format.radix();
639
640 // Now need to compare the theoretical digits. First, I need to trim
641 // any leading zeros, and will also need to ignore trailing ones.
642 let mut integer = number.integer.bytes::<{ FORMAT }>();
643 let mut integer_iter = integer.integer_iter();
644 integer_iter.skip_zeros();
645 if integer_iter.is_done() {
646 // Cannot be empty, since we must have at least **some** significant digits.
647 let mut fraction = number.fraction.unwrap().bytes::<{ FORMAT }>();
648 let mut fraction_iter = fraction.fraction_iter();
649 fraction_iter.skip_zeros();
650 fraction_compare!(fraction_iter, num, den, radix);
651 } else {
652 integer_compare!(integer_iter, num, den, radix);
653 if let Some(fraction) = number.fraction {
654 let mut fraction = fraction.bytes::<{ FORMAT }>();
655 let mut fraction_iter = fraction.fraction_iter();
656 fraction_compare!(fraction_iter, num, den, radix);
657 } else if !num.data.is_empty() {
658 // We had more theoretical digits, but no more actual digits.
659 return cmp::Ordering::Less;
660 }
661 }
662
663 // Exhausted both, must be equal.
664 cmp::Ordering::Equal
665}
666
667// SCALING
668// -------
669
670/// Calculate the scientific exponent from a `Number` value.
671/// Any other attempts would require slowdowns for faster algorithms.
672#[inline]
673pub fn scientific_exponent<const FORMAT: u128>(num: &Number) -> i32 {
674 // This has the significant digits and exponent relative to those
675 // digits: therefore, we just need to scale to mantissa to `[1, radix)`.
676 // This doesn't need to be very fast.
677 let format = NumberFormat::<FORMAT> {};
678
679 // Use power reduction to make this faster: we need at least
680 // F::MANTISSA_SIZE bits, so we must have at least radix^4 digits.
681 // IF we're using base 3, we can have at most 11 divisions, and
682 // base 36, at most ~4. So, this is reasonably efficient.
683 let radix = format.radix() as u64;
684 let radix2 = radix * radix;
685 let radix4 = radix2 * radix2;
686 let mut mantissa = num.mantissa;
687 let mut exponent = num.exponent;
688 while mantissa >= radix4 {
689 mantissa /= radix4;
690 exponent += 4;
691 }
692 while mantissa >= radix2 {
693 mantissa /= radix2;
694 exponent += 2;
695 }
696 while mantissa >= radix {
697 mantissa /= radix;
698 exponent += 1;
699 }
700 exponent as i32
701}
702
703/// Calculate `b` from a a representation of `b` as a float.
704#[inline]
705pub fn b<F: RawFloat>(float: F) -> ExtendedFloat80 {
706 ExtendedFloat80 {
707 mant: float.mantissa().as_u64(),
708 exp: float.exponent(),
709 }
710}
711
712/// Calculate `b+h` from a a representation of `b` as a float.
713#[inline]
714pub fn bh<F: RawFloat>(float: F) -> ExtendedFloat80 {
715 let fp = b(float);
716 ExtendedFloat80 {
717 mant: (fp.mant << 1) + 1,
718 exp: fp.exp - 1,
719 }
720}
721
722/// Calculate the integral ceiling of the binary factor from a basen number.
723#[inline]
724pub const fn integral_binary_factor(radix: u32) -> u32 {
725 match radix {
726 3 if cfg!(feature = "radix") => 2,
727 5 if cfg!(feature = "radix") => 3,
728 6 if cfg!(feature = "radix") => 3,
729 7 if cfg!(feature = "radix") => 3,
730 9 if cfg!(feature = "radix") => 4,
731 10 => 4,
732 11 if cfg!(feature = "radix") => 4,
733 12 if cfg!(feature = "radix") => 4,
734 13 if cfg!(feature = "radix") => 4,
735 14 if cfg!(feature = "radix") => 4,
736 15 if cfg!(feature = "radix") => 4,
737 17 if cfg!(feature = "radix") => 5,
738 18 if cfg!(feature = "radix") => 5,
739 19 if cfg!(feature = "radix") => 5,
740 20 if cfg!(feature = "radix") => 5,
741 21 if cfg!(feature = "radix") => 5,
742 22 if cfg!(feature = "radix") => 5,
743 23 if cfg!(feature = "radix") => 5,
744 24 if cfg!(feature = "radix") => 5,
745 25 if cfg!(feature = "radix") => 5,
746 26 if cfg!(feature = "radix") => 5,
747 27 if cfg!(feature = "radix") => 5,
748 28 if cfg!(feature = "radix") => 5,
749 29 if cfg!(feature = "radix") => 5,
750 30 if cfg!(feature = "radix") => 5,
751 31 if cfg!(feature = "radix") => 5,
752 33 if cfg!(feature = "radix") => 6,
753 34 if cfg!(feature = "radix") => 6,
754 35 if cfg!(feature = "radix") => 6,
755 36 if cfg!(feature = "radix") => 6,
756 // Invalid radix
757 _ => 0,
758 }
759}