opentelemetry_sdk/metrics/internal/
precomputed_sum.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
use opentelemetry::KeyValue;

use crate::metrics::data::{self, Aggregation, Sum, SumDataPoint};
use crate::metrics::Temporality;

use super::aggregate::{AggregateTimeInitiator, AttributeSetFilter};
use super::{last_value::Assign, AtomicTracker, Number, ValueMap};
use super::{ComputeAggregation, Measure};
use std::{collections::HashMap, sync::Mutex};

/// Summarizes a set of pre-computed sums as their arithmetic sum.
pub(crate) struct PrecomputedSum<T: Number> {
    value_map: ValueMap<Assign<T>>,
    init_time: AggregateTimeInitiator,
    temporality: Temporality,
    filter: AttributeSetFilter,
    monotonic: bool,
    reported: Mutex<HashMap<Vec<KeyValue>, T>>,
}

impl<T: Number> PrecomputedSum<T> {
    pub(crate) fn new(
        temporality: Temporality,
        filter: AttributeSetFilter,
        monotonic: bool,
    ) -> Self {
        PrecomputedSum {
            value_map: ValueMap::new(()),
            init_time: AggregateTimeInitiator::default(),
            temporality,
            filter,
            monotonic,
            reported: Mutex::new(Default::default()),
        }
    }

    pub(crate) fn delta(
        &self,
        dest: Option<&mut dyn Aggregation>,
    ) -> (usize, Option<Box<dyn Aggregation>>) {
        let time = self.init_time.delta();

        let s_data = dest.and_then(|d| d.as_mut().downcast_mut::<Sum<T>>());
        let mut new_agg = if s_data.is_none() {
            Some(data::Sum {
                data_points: vec![],
                start_time: time.start,
                time: time.current,
                temporality: Temporality::Delta,
                is_monotonic: self.monotonic,
            })
        } else {
            None
        };
        let s_data = s_data.unwrap_or_else(|| new_agg.as_mut().expect("present if s_data is none"));
        s_data.start_time = time.start;
        s_data.time = time.current;
        s_data.temporality = Temporality::Delta;
        s_data.is_monotonic = self.monotonic;

        let mut reported = match self.reported.lock() {
            Ok(r) => r,
            Err(_) => return (0, None),
        };
        let mut new_reported = HashMap::with_capacity(reported.len());

        self.value_map
            .collect_and_reset(&mut s_data.data_points, |attributes, aggr| {
                let value = aggr.value.get_value();
                new_reported.insert(attributes.clone(), value);
                let delta = value - *reported.get(&attributes).unwrap_or(&T::default());
                SumDataPoint {
                    attributes,
                    value: delta,
                    exemplars: vec![],
                }
            });

        *reported = new_reported;
        drop(reported); // drop before values guard is dropped

        (
            s_data.data_points.len(),
            new_agg.map(|a| Box::new(a) as Box<_>),
        )
    }

    pub(crate) fn cumulative(
        &self,
        dest: Option<&mut dyn Aggregation>,
    ) -> (usize, Option<Box<dyn Aggregation>>) {
        let time = self.init_time.cumulative();

        let s_data = dest.and_then(|d| d.as_mut().downcast_mut::<Sum<T>>());
        let mut new_agg = if s_data.is_none() {
            Some(data::Sum {
                data_points: vec![],
                start_time: time.start,
                time: time.current,
                temporality: Temporality::Cumulative,
                is_monotonic: self.monotonic,
            })
        } else {
            None
        };
        let s_data = s_data.unwrap_or_else(|| new_agg.as_mut().expect("present if s_data is none"));
        s_data.start_time = time.start;
        s_data.time = time.current;
        s_data.temporality = Temporality::Cumulative;
        s_data.is_monotonic = self.monotonic;

        self.value_map
            .collect_readonly(&mut s_data.data_points, |attributes, aggr| SumDataPoint {
                attributes,
                value: aggr.value.get_value(),
                exemplars: vec![],
            });

        (
            s_data.data_points.len(),
            new_agg.map(|a| Box::new(a) as Box<_>),
        )
    }
}

impl<T> Measure<T> for PrecomputedSum<T>
where
    T: Number,
{
    fn call(&self, measurement: T, attrs: &[KeyValue]) {
        self.filter.apply(attrs, |filtered| {
            self.value_map.measure(measurement, filtered);
        })
    }
}

impl<T> ComputeAggregation for PrecomputedSum<T>
where
    T: Number,
{
    fn call(&self, dest: Option<&mut dyn Aggregation>) -> (usize, Option<Box<dyn Aggregation>>) {
        match self.temporality {
            Temporality::Delta => self.delta(dest),
            _ => self.cumulative(dest),
        }
    }
}