opentelemetry_sdk/metrics/internal/
precomputed_sum.rsuse opentelemetry::KeyValue;
use crate::metrics::data::{self, Aggregation, Sum, SumDataPoint};
use crate::metrics::Temporality;
use super::aggregate::{AggregateTimeInitiator, AttributeSetFilter};
use super::{last_value::Assign, AtomicTracker, Number, ValueMap};
use super::{ComputeAggregation, Measure};
use std::{collections::HashMap, sync::Mutex};
pub(crate) struct PrecomputedSum<T: Number> {
value_map: ValueMap<Assign<T>>,
init_time: AggregateTimeInitiator,
temporality: Temporality,
filter: AttributeSetFilter,
monotonic: bool,
reported: Mutex<HashMap<Vec<KeyValue>, T>>,
}
impl<T: Number> PrecomputedSum<T> {
pub(crate) fn new(
temporality: Temporality,
filter: AttributeSetFilter,
monotonic: bool,
) -> Self {
PrecomputedSum {
value_map: ValueMap::new(()),
init_time: AggregateTimeInitiator::default(),
temporality,
filter,
monotonic,
reported: Mutex::new(Default::default()),
}
}
pub(crate) fn delta(
&self,
dest: Option<&mut dyn Aggregation>,
) -> (usize, Option<Box<dyn Aggregation>>) {
let time = self.init_time.delta();
let s_data = dest.and_then(|d| d.as_mut().downcast_mut::<Sum<T>>());
let mut new_agg = if s_data.is_none() {
Some(data::Sum {
data_points: vec![],
start_time: time.start,
time: time.current,
temporality: Temporality::Delta,
is_monotonic: self.monotonic,
})
} else {
None
};
let s_data = s_data.unwrap_or_else(|| new_agg.as_mut().expect("present if s_data is none"));
s_data.start_time = time.start;
s_data.time = time.current;
s_data.temporality = Temporality::Delta;
s_data.is_monotonic = self.monotonic;
let mut reported = match self.reported.lock() {
Ok(r) => r,
Err(_) => return (0, None),
};
let mut new_reported = HashMap::with_capacity(reported.len());
self.value_map
.collect_and_reset(&mut s_data.data_points, |attributes, aggr| {
let value = aggr.value.get_value();
new_reported.insert(attributes.clone(), value);
let delta = value - *reported.get(&attributes).unwrap_or(&T::default());
SumDataPoint {
attributes,
value: delta,
exemplars: vec![],
}
});
*reported = new_reported;
drop(reported); (
s_data.data_points.len(),
new_agg.map(|a| Box::new(a) as Box<_>),
)
}
pub(crate) fn cumulative(
&self,
dest: Option<&mut dyn Aggregation>,
) -> (usize, Option<Box<dyn Aggregation>>) {
let time = self.init_time.cumulative();
let s_data = dest.and_then(|d| d.as_mut().downcast_mut::<Sum<T>>());
let mut new_agg = if s_data.is_none() {
Some(data::Sum {
data_points: vec![],
start_time: time.start,
time: time.current,
temporality: Temporality::Cumulative,
is_monotonic: self.monotonic,
})
} else {
None
};
let s_data = s_data.unwrap_or_else(|| new_agg.as_mut().expect("present if s_data is none"));
s_data.start_time = time.start;
s_data.time = time.current;
s_data.temporality = Temporality::Cumulative;
s_data.is_monotonic = self.monotonic;
self.value_map
.collect_readonly(&mut s_data.data_points, |attributes, aggr| SumDataPoint {
attributes,
value: aggr.value.get_value(),
exemplars: vec![],
});
(
s_data.data_points.len(),
new_agg.map(|a| Box::new(a) as Box<_>),
)
}
}
impl<T> Measure<T> for PrecomputedSum<T>
where
T: Number,
{
fn call(&self, measurement: T, attrs: &[KeyValue]) {
self.filter.apply(attrs, |filtered| {
self.value_map.measure(measurement, filtered);
})
}
}
impl<T> ComputeAggregation for PrecomputedSum<T>
where
T: Number,
{
fn call(&self, dest: Option<&mut dyn Aggregation>) -> (usize, Option<Box<dyn Aggregation>>) {
match self.temporality {
Temporality::Delta => self.delta(dest),
_ => self.cumulative(dest),
}
}
}