prost_types/protobuf.rs
1// This file is @generated by prost-build.
2/// The protocol compiler can output a FileDescriptorSet containing the .proto
3/// files it parses.
4#[derive(Clone, PartialEq, ::prost::Message)]
5pub struct FileDescriptorSet {
6 #[prost(message, repeated, tag = "1")]
7 pub file: ::prost::alloc::vec::Vec<FileDescriptorProto>,
8}
9/// Describes a complete .proto file.
10#[derive(Clone, PartialEq, ::prost::Message)]
11pub struct FileDescriptorProto {
12 /// file name, relative to root of source tree
13 #[prost(string, optional, tag = "1")]
14 pub name: ::core::option::Option<::prost::alloc::string::String>,
15 /// e.g. "foo", "foo.bar", etc.
16 #[prost(string, optional, tag = "2")]
17 pub package: ::core::option::Option<::prost::alloc::string::String>,
18 /// Names of files imported by this file.
19 #[prost(string, repeated, tag = "3")]
20 pub dependency: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
21 /// Indexes of the public imported files in the dependency list above.
22 #[prost(int32, repeated, packed = "false", tag = "10")]
23 pub public_dependency: ::prost::alloc::vec::Vec<i32>,
24 /// Indexes of the weak imported files in the dependency list.
25 /// For Google-internal migration only. Do not use.
26 #[prost(int32, repeated, packed = "false", tag = "11")]
27 pub weak_dependency: ::prost::alloc::vec::Vec<i32>,
28 /// All top-level definitions in this file.
29 #[prost(message, repeated, tag = "4")]
30 pub message_type: ::prost::alloc::vec::Vec<DescriptorProto>,
31 #[prost(message, repeated, tag = "5")]
32 pub enum_type: ::prost::alloc::vec::Vec<EnumDescriptorProto>,
33 #[prost(message, repeated, tag = "6")]
34 pub service: ::prost::alloc::vec::Vec<ServiceDescriptorProto>,
35 #[prost(message, repeated, tag = "7")]
36 pub extension: ::prost::alloc::vec::Vec<FieldDescriptorProto>,
37 #[prost(message, optional, tag = "8")]
38 pub options: ::core::option::Option<FileOptions>,
39 /// This field contains optional information about the original source code.
40 /// You may safely remove this entire field without harming runtime
41 /// functionality of the descriptors -- the information is needed only by
42 /// development tools.
43 #[prost(message, optional, tag = "9")]
44 pub source_code_info: ::core::option::Option<SourceCodeInfo>,
45 /// The syntax of the proto file.
46 /// The supported values are "proto2" and "proto3".
47 #[prost(string, optional, tag = "12")]
48 pub syntax: ::core::option::Option<::prost::alloc::string::String>,
49}
50/// Describes a message type.
51#[derive(Clone, PartialEq, ::prost::Message)]
52pub struct DescriptorProto {
53 #[prost(string, optional, tag = "1")]
54 pub name: ::core::option::Option<::prost::alloc::string::String>,
55 #[prost(message, repeated, tag = "2")]
56 pub field: ::prost::alloc::vec::Vec<FieldDescriptorProto>,
57 #[prost(message, repeated, tag = "6")]
58 pub extension: ::prost::alloc::vec::Vec<FieldDescriptorProto>,
59 #[prost(message, repeated, tag = "3")]
60 pub nested_type: ::prost::alloc::vec::Vec<DescriptorProto>,
61 #[prost(message, repeated, tag = "4")]
62 pub enum_type: ::prost::alloc::vec::Vec<EnumDescriptorProto>,
63 #[prost(message, repeated, tag = "5")]
64 pub extension_range: ::prost::alloc::vec::Vec<descriptor_proto::ExtensionRange>,
65 #[prost(message, repeated, tag = "8")]
66 pub oneof_decl: ::prost::alloc::vec::Vec<OneofDescriptorProto>,
67 #[prost(message, optional, tag = "7")]
68 pub options: ::core::option::Option<MessageOptions>,
69 #[prost(message, repeated, tag = "9")]
70 pub reserved_range: ::prost::alloc::vec::Vec<descriptor_proto::ReservedRange>,
71 /// Reserved field names, which may not be used by fields in the same message.
72 /// A given name may only be reserved once.
73 #[prost(string, repeated, tag = "10")]
74 pub reserved_name: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
75}
76/// Nested message and enum types in `DescriptorProto`.
77pub mod descriptor_proto {
78 #[derive(Clone, PartialEq, ::prost::Message)]
79 pub struct ExtensionRange {
80 /// Inclusive.
81 #[prost(int32, optional, tag = "1")]
82 pub start: ::core::option::Option<i32>,
83 /// Exclusive.
84 #[prost(int32, optional, tag = "2")]
85 pub end: ::core::option::Option<i32>,
86 #[prost(message, optional, tag = "3")]
87 pub options: ::core::option::Option<super::ExtensionRangeOptions>,
88 }
89 /// Range of reserved tag numbers. Reserved tag numbers may not be used by
90 /// fields or extension ranges in the same message. Reserved ranges may
91 /// not overlap.
92 #[derive(Clone, Copy, PartialEq, ::prost::Message)]
93 pub struct ReservedRange {
94 /// Inclusive.
95 #[prost(int32, optional, tag = "1")]
96 pub start: ::core::option::Option<i32>,
97 /// Exclusive.
98 #[prost(int32, optional, tag = "2")]
99 pub end: ::core::option::Option<i32>,
100 }
101}
102#[derive(Clone, PartialEq, ::prost::Message)]
103pub struct ExtensionRangeOptions {
104 /// The parser stores options it doesn't recognize here. See above.
105 #[prost(message, repeated, tag = "999")]
106 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
107}
108/// Describes a field within a message.
109#[derive(Clone, PartialEq, ::prost::Message)]
110pub struct FieldDescriptorProto {
111 #[prost(string, optional, tag = "1")]
112 pub name: ::core::option::Option<::prost::alloc::string::String>,
113 #[prost(int32, optional, tag = "3")]
114 pub number: ::core::option::Option<i32>,
115 #[prost(enumeration = "field_descriptor_proto::Label", optional, tag = "4")]
116 pub label: ::core::option::Option<i32>,
117 /// If type_name is set, this need not be set. If both this and type_name
118 /// are set, this must be one of TYPE_ENUM, TYPE_MESSAGE or TYPE_GROUP.
119 #[prost(enumeration = "field_descriptor_proto::Type", optional, tag = "5")]
120 pub r#type: ::core::option::Option<i32>,
121 /// For message and enum types, this is the name of the type. If the name
122 /// starts with a '.', it is fully-qualified. Otherwise, C++-like scoping
123 /// rules are used to find the type (i.e. first the nested types within this
124 /// message are searched, then within the parent, on up to the root
125 /// namespace).
126 #[prost(string, optional, tag = "6")]
127 pub type_name: ::core::option::Option<::prost::alloc::string::String>,
128 /// For extensions, this is the name of the type being extended. It is
129 /// resolved in the same manner as type_name.
130 #[prost(string, optional, tag = "2")]
131 pub extendee: ::core::option::Option<::prost::alloc::string::String>,
132 /// For numeric types, contains the original text representation of the value.
133 /// For booleans, "true" or "false".
134 /// For strings, contains the default text contents (not escaped in any way).
135 /// For bytes, contains the C escaped value. All bytes >= 128 are escaped.
136 /// TODO(kenton): Base-64 encode?
137 #[prost(string, optional, tag = "7")]
138 pub default_value: ::core::option::Option<::prost::alloc::string::String>,
139 /// If set, gives the index of a oneof in the containing type's oneof_decl
140 /// list. This field is a member of that oneof.
141 #[prost(int32, optional, tag = "9")]
142 pub oneof_index: ::core::option::Option<i32>,
143 /// JSON name of this field. The value is set by protocol compiler. If the
144 /// user has set a "json_name" option on this field, that option's value
145 /// will be used. Otherwise, it's deduced from the field's name by converting
146 /// it to camelCase.
147 #[prost(string, optional, tag = "10")]
148 pub json_name: ::core::option::Option<::prost::alloc::string::String>,
149 #[prost(message, optional, tag = "8")]
150 pub options: ::core::option::Option<FieldOptions>,
151 /// If true, this is a proto3 "optional". When a proto3 field is optional, it
152 /// tracks presence regardless of field type.
153 ///
154 /// When proto3_optional is true, this field must be belong to a oneof to
155 /// signal to old proto3 clients that presence is tracked for this field. This
156 /// oneof is known as a "synthetic" oneof, and this field must be its sole
157 /// member (each proto3 optional field gets its own synthetic oneof). Synthetic
158 /// oneofs exist in the descriptor only, and do not generate any API. Synthetic
159 /// oneofs must be ordered after all "real" oneofs.
160 ///
161 /// For message fields, proto3_optional doesn't create any semantic change,
162 /// since non-repeated message fields always track presence. However it still
163 /// indicates the semantic detail of whether the user wrote "optional" or not.
164 /// This can be useful for round-tripping the .proto file. For consistency we
165 /// give message fields a synthetic oneof also, even though it is not required
166 /// to track presence. This is especially important because the parser can't
167 /// tell if a field is a message or an enum, so it must always create a
168 /// synthetic oneof.
169 ///
170 /// Proto2 optional fields do not set this flag, because they already indicate
171 /// optional with `LABEL_OPTIONAL`.
172 #[prost(bool, optional, tag = "17")]
173 pub proto3_optional: ::core::option::Option<bool>,
174}
175/// Nested message and enum types in `FieldDescriptorProto`.
176pub mod field_descriptor_proto {
177 #[derive(
178 Clone,
179 Copy,
180 Debug,
181 PartialEq,
182 Eq,
183 Hash,
184 PartialOrd,
185 Ord,
186 ::prost::Enumeration
187 )]
188 #[repr(i32)]
189 pub enum Type {
190 /// 0 is reserved for errors.
191 /// Order is weird for historical reasons.
192 Double = 1,
193 Float = 2,
194 /// Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT64 if
195 /// negative values are likely.
196 Int64 = 3,
197 Uint64 = 4,
198 /// Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT32 if
199 /// negative values are likely.
200 Int32 = 5,
201 Fixed64 = 6,
202 Fixed32 = 7,
203 Bool = 8,
204 String = 9,
205 /// Tag-delimited aggregate.
206 /// Group type is deprecated and not supported in proto3. However, Proto3
207 /// implementations should still be able to parse the group wire format and
208 /// treat group fields as unknown fields.
209 Group = 10,
210 /// Length-delimited aggregate.
211 Message = 11,
212 /// New in version 2.
213 Bytes = 12,
214 Uint32 = 13,
215 Enum = 14,
216 Sfixed32 = 15,
217 Sfixed64 = 16,
218 /// Uses ZigZag encoding.
219 Sint32 = 17,
220 /// Uses ZigZag encoding.
221 Sint64 = 18,
222 }
223 impl Type {
224 /// String value of the enum field names used in the ProtoBuf definition.
225 ///
226 /// The values are not transformed in any way and thus are considered stable
227 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
228 pub fn as_str_name(&self) -> &'static str {
229 match self {
230 Self::Double => "TYPE_DOUBLE",
231 Self::Float => "TYPE_FLOAT",
232 Self::Int64 => "TYPE_INT64",
233 Self::Uint64 => "TYPE_UINT64",
234 Self::Int32 => "TYPE_INT32",
235 Self::Fixed64 => "TYPE_FIXED64",
236 Self::Fixed32 => "TYPE_FIXED32",
237 Self::Bool => "TYPE_BOOL",
238 Self::String => "TYPE_STRING",
239 Self::Group => "TYPE_GROUP",
240 Self::Message => "TYPE_MESSAGE",
241 Self::Bytes => "TYPE_BYTES",
242 Self::Uint32 => "TYPE_UINT32",
243 Self::Enum => "TYPE_ENUM",
244 Self::Sfixed32 => "TYPE_SFIXED32",
245 Self::Sfixed64 => "TYPE_SFIXED64",
246 Self::Sint32 => "TYPE_SINT32",
247 Self::Sint64 => "TYPE_SINT64",
248 }
249 }
250 /// Creates an enum from field names used in the ProtoBuf definition.
251 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
252 match value {
253 "TYPE_DOUBLE" => Some(Self::Double),
254 "TYPE_FLOAT" => Some(Self::Float),
255 "TYPE_INT64" => Some(Self::Int64),
256 "TYPE_UINT64" => Some(Self::Uint64),
257 "TYPE_INT32" => Some(Self::Int32),
258 "TYPE_FIXED64" => Some(Self::Fixed64),
259 "TYPE_FIXED32" => Some(Self::Fixed32),
260 "TYPE_BOOL" => Some(Self::Bool),
261 "TYPE_STRING" => Some(Self::String),
262 "TYPE_GROUP" => Some(Self::Group),
263 "TYPE_MESSAGE" => Some(Self::Message),
264 "TYPE_BYTES" => Some(Self::Bytes),
265 "TYPE_UINT32" => Some(Self::Uint32),
266 "TYPE_ENUM" => Some(Self::Enum),
267 "TYPE_SFIXED32" => Some(Self::Sfixed32),
268 "TYPE_SFIXED64" => Some(Self::Sfixed64),
269 "TYPE_SINT32" => Some(Self::Sint32),
270 "TYPE_SINT64" => Some(Self::Sint64),
271 _ => None,
272 }
273 }
274 }
275 #[derive(
276 Clone,
277 Copy,
278 Debug,
279 PartialEq,
280 Eq,
281 Hash,
282 PartialOrd,
283 Ord,
284 ::prost::Enumeration
285 )]
286 #[repr(i32)]
287 pub enum Label {
288 /// 0 is reserved for errors
289 Optional = 1,
290 Required = 2,
291 Repeated = 3,
292 }
293 impl Label {
294 /// String value of the enum field names used in the ProtoBuf definition.
295 ///
296 /// The values are not transformed in any way and thus are considered stable
297 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
298 pub fn as_str_name(&self) -> &'static str {
299 match self {
300 Self::Optional => "LABEL_OPTIONAL",
301 Self::Required => "LABEL_REQUIRED",
302 Self::Repeated => "LABEL_REPEATED",
303 }
304 }
305 /// Creates an enum from field names used in the ProtoBuf definition.
306 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
307 match value {
308 "LABEL_OPTIONAL" => Some(Self::Optional),
309 "LABEL_REQUIRED" => Some(Self::Required),
310 "LABEL_REPEATED" => Some(Self::Repeated),
311 _ => None,
312 }
313 }
314 }
315}
316/// Describes a oneof.
317#[derive(Clone, PartialEq, ::prost::Message)]
318pub struct OneofDescriptorProto {
319 #[prost(string, optional, tag = "1")]
320 pub name: ::core::option::Option<::prost::alloc::string::String>,
321 #[prost(message, optional, tag = "2")]
322 pub options: ::core::option::Option<OneofOptions>,
323}
324/// Describes an enum type.
325#[derive(Clone, PartialEq, ::prost::Message)]
326pub struct EnumDescriptorProto {
327 #[prost(string, optional, tag = "1")]
328 pub name: ::core::option::Option<::prost::alloc::string::String>,
329 #[prost(message, repeated, tag = "2")]
330 pub value: ::prost::alloc::vec::Vec<EnumValueDescriptorProto>,
331 #[prost(message, optional, tag = "3")]
332 pub options: ::core::option::Option<EnumOptions>,
333 /// Range of reserved numeric values. Reserved numeric values may not be used
334 /// by enum values in the same enum declaration. Reserved ranges may not
335 /// overlap.
336 #[prost(message, repeated, tag = "4")]
337 pub reserved_range: ::prost::alloc::vec::Vec<
338 enum_descriptor_proto::EnumReservedRange,
339 >,
340 /// Reserved enum value names, which may not be reused. A given name may only
341 /// be reserved once.
342 #[prost(string, repeated, tag = "5")]
343 pub reserved_name: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
344}
345/// Nested message and enum types in `EnumDescriptorProto`.
346pub mod enum_descriptor_proto {
347 /// Range of reserved numeric values. Reserved values may not be used by
348 /// entries in the same enum. Reserved ranges may not overlap.
349 ///
350 /// Note that this is distinct from DescriptorProto.ReservedRange in that it
351 /// is inclusive such that it can appropriately represent the entire int32
352 /// domain.
353 #[derive(Clone, Copy, PartialEq, ::prost::Message)]
354 pub struct EnumReservedRange {
355 /// Inclusive.
356 #[prost(int32, optional, tag = "1")]
357 pub start: ::core::option::Option<i32>,
358 /// Inclusive.
359 #[prost(int32, optional, tag = "2")]
360 pub end: ::core::option::Option<i32>,
361 }
362}
363/// Describes a value within an enum.
364#[derive(Clone, PartialEq, ::prost::Message)]
365pub struct EnumValueDescriptorProto {
366 #[prost(string, optional, tag = "1")]
367 pub name: ::core::option::Option<::prost::alloc::string::String>,
368 #[prost(int32, optional, tag = "2")]
369 pub number: ::core::option::Option<i32>,
370 #[prost(message, optional, tag = "3")]
371 pub options: ::core::option::Option<EnumValueOptions>,
372}
373/// Describes a service.
374#[derive(Clone, PartialEq, ::prost::Message)]
375pub struct ServiceDescriptorProto {
376 #[prost(string, optional, tag = "1")]
377 pub name: ::core::option::Option<::prost::alloc::string::String>,
378 #[prost(message, repeated, tag = "2")]
379 pub method: ::prost::alloc::vec::Vec<MethodDescriptorProto>,
380 #[prost(message, optional, tag = "3")]
381 pub options: ::core::option::Option<ServiceOptions>,
382}
383/// Describes a method of a service.
384#[derive(Clone, PartialEq, ::prost::Message)]
385pub struct MethodDescriptorProto {
386 #[prost(string, optional, tag = "1")]
387 pub name: ::core::option::Option<::prost::alloc::string::String>,
388 /// Input and output type names. These are resolved in the same way as
389 /// FieldDescriptorProto.type_name, but must refer to a message type.
390 #[prost(string, optional, tag = "2")]
391 pub input_type: ::core::option::Option<::prost::alloc::string::String>,
392 #[prost(string, optional, tag = "3")]
393 pub output_type: ::core::option::Option<::prost::alloc::string::String>,
394 #[prost(message, optional, tag = "4")]
395 pub options: ::core::option::Option<MethodOptions>,
396 /// Identifies if client streams multiple client messages
397 #[prost(bool, optional, tag = "5", default = "false")]
398 pub client_streaming: ::core::option::Option<bool>,
399 /// Identifies if server streams multiple server messages
400 #[prost(bool, optional, tag = "6", default = "false")]
401 pub server_streaming: ::core::option::Option<bool>,
402}
403/// Each of the definitions above may have "options" attached. These are
404/// just annotations which may cause code to be generated slightly differently
405/// or may contain hints for code that manipulates protocol messages.
406///
407/// Clients may define custom options as extensions of the \*Options messages.
408/// These extensions may not yet be known at parsing time, so the parser cannot
409/// store the values in them. Instead it stores them in a field in the \*Options
410/// message called uninterpreted_option. This field must have the same name
411/// across all \*Options messages. We then use this field to populate the
412/// extensions when we build a descriptor, at which point all protos have been
413/// parsed and so all extensions are known.
414///
415/// Extension numbers for custom options may be chosen as follows:
416///
417/// * For options which will only be used within a single application or
418/// organization, or for experimental options, use field numbers 50000
419/// through 99999. It is up to you to ensure that you do not use the
420/// same number for multiple options.
421/// * For options which will be published and used publicly by multiple
422/// independent entities, e-mail protobuf-global-extension-registry@google.com
423/// to reserve extension numbers. Simply provide your project name (e.g.
424/// Objective-C plugin) and your project website (if available) -- there's no
425/// need to explain how you intend to use them. Usually you only need one
426/// extension number. You can declare multiple options with only one extension
427/// number by putting them in a sub-message. See the Custom Options section of
428/// the docs for examples:
429/// <https://developers.google.com/protocol-buffers/docs/proto#options>
430/// If this turns out to be popular, a web service will be set up
431/// to automatically assign option numbers.
432#[derive(Clone, PartialEq, ::prost::Message)]
433pub struct FileOptions {
434 /// Sets the Java package where classes generated from this .proto will be
435 /// placed. By default, the proto package is used, but this is often
436 /// inappropriate because proto packages do not normally start with backwards
437 /// domain names.
438 #[prost(string, optional, tag = "1")]
439 pub java_package: ::core::option::Option<::prost::alloc::string::String>,
440 /// Controls the name of the wrapper Java class generated for the .proto file.
441 /// That class will always contain the .proto file's getDescriptor() method as
442 /// well as any top-level extensions defined in the .proto file.
443 /// If java_multiple_files is disabled, then all the other classes from the
444 /// .proto file will be nested inside the single wrapper outer class.
445 #[prost(string, optional, tag = "8")]
446 pub java_outer_classname: ::core::option::Option<::prost::alloc::string::String>,
447 /// If enabled, then the Java code generator will generate a separate .java
448 /// file for each top-level message, enum, and service defined in the .proto
449 /// file. Thus, these types will *not* be nested inside the wrapper class
450 /// named by java_outer_classname. However, the wrapper class will still be
451 /// generated to contain the file's getDescriptor() method as well as any
452 /// top-level extensions defined in the file.
453 #[prost(bool, optional, tag = "10", default = "false")]
454 pub java_multiple_files: ::core::option::Option<bool>,
455 /// This option does nothing.
456 #[deprecated]
457 #[prost(bool, optional, tag = "20")]
458 pub java_generate_equals_and_hash: ::core::option::Option<bool>,
459 /// If set true, then the Java2 code generator will generate code that
460 /// throws an exception whenever an attempt is made to assign a non-UTF-8
461 /// byte sequence to a string field.
462 /// Message reflection will do the same.
463 /// However, an extension field still accepts non-UTF-8 byte sequences.
464 /// This option has no effect on when used with the lite runtime.
465 #[prost(bool, optional, tag = "27", default = "false")]
466 pub java_string_check_utf8: ::core::option::Option<bool>,
467 #[prost(
468 enumeration = "file_options::OptimizeMode",
469 optional,
470 tag = "9",
471 default = "Speed"
472 )]
473 pub optimize_for: ::core::option::Option<i32>,
474 /// Sets the Go package where structs generated from this .proto will be
475 /// placed. If omitted, the Go package will be derived from the following:
476 ///
477 /// * The basename of the package import path, if provided.
478 /// * Otherwise, the package statement in the .proto file, if present.
479 /// * Otherwise, the basename of the .proto file, without extension.
480 #[prost(string, optional, tag = "11")]
481 pub go_package: ::core::option::Option<::prost::alloc::string::String>,
482 /// Should generic services be generated in each language? "Generic" services
483 /// are not specific to any particular RPC system. They are generated by the
484 /// main code generators in each language (without additional plugins).
485 /// Generic services were the only kind of service generation supported by
486 /// early versions of google.protobuf.
487 ///
488 /// Generic services are now considered deprecated in favor of using plugins
489 /// that generate code specific to your particular RPC system. Therefore,
490 /// these default to false. Old code which depends on generic services should
491 /// explicitly set them to true.
492 #[prost(bool, optional, tag = "16", default = "false")]
493 pub cc_generic_services: ::core::option::Option<bool>,
494 #[prost(bool, optional, tag = "17", default = "false")]
495 pub java_generic_services: ::core::option::Option<bool>,
496 #[prost(bool, optional, tag = "18", default = "false")]
497 pub py_generic_services: ::core::option::Option<bool>,
498 #[prost(bool, optional, tag = "42", default = "false")]
499 pub php_generic_services: ::core::option::Option<bool>,
500 /// Is this file deprecated?
501 /// Depending on the target platform, this can emit Deprecated annotations
502 /// for everything in the file, or it will be completely ignored; in the very
503 /// least, this is a formalization for deprecating files.
504 #[prost(bool, optional, tag = "23", default = "false")]
505 pub deprecated: ::core::option::Option<bool>,
506 /// Enables the use of arenas for the proto messages in this file. This applies
507 /// only to generated classes for C++.
508 #[prost(bool, optional, tag = "31", default = "true")]
509 pub cc_enable_arenas: ::core::option::Option<bool>,
510 /// Sets the objective c class prefix which is prepended to all objective c
511 /// generated classes from this .proto. There is no default.
512 #[prost(string, optional, tag = "36")]
513 pub objc_class_prefix: ::core::option::Option<::prost::alloc::string::String>,
514 /// Namespace for generated classes; defaults to the package.
515 #[prost(string, optional, tag = "37")]
516 pub csharp_namespace: ::core::option::Option<::prost::alloc::string::String>,
517 /// By default Swift generators will take the proto package and CamelCase it
518 /// replacing '.' with underscore and use that to prefix the types/symbols
519 /// defined. When this options is provided, they will use this value instead
520 /// to prefix the types/symbols defined.
521 #[prost(string, optional, tag = "39")]
522 pub swift_prefix: ::core::option::Option<::prost::alloc::string::String>,
523 /// Sets the php class prefix which is prepended to all php generated classes
524 /// from this .proto. Default is empty.
525 #[prost(string, optional, tag = "40")]
526 pub php_class_prefix: ::core::option::Option<::prost::alloc::string::String>,
527 /// Use this option to change the namespace of php generated classes. Default
528 /// is empty. When this option is empty, the package name will be used for
529 /// determining the namespace.
530 #[prost(string, optional, tag = "41")]
531 pub php_namespace: ::core::option::Option<::prost::alloc::string::String>,
532 /// Use this option to change the namespace of php generated metadata classes.
533 /// Default is empty. When this option is empty, the proto file name will be
534 /// used for determining the namespace.
535 #[prost(string, optional, tag = "44")]
536 pub php_metadata_namespace: ::core::option::Option<::prost::alloc::string::String>,
537 /// Use this option to change the package of ruby generated classes. Default
538 /// is empty. When this option is not set, the package name will be used for
539 /// determining the ruby package.
540 #[prost(string, optional, tag = "45")]
541 pub ruby_package: ::core::option::Option<::prost::alloc::string::String>,
542 /// The parser stores options it doesn't recognize here.
543 /// See the documentation for the "Options" section above.
544 #[prost(message, repeated, tag = "999")]
545 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
546}
547/// Nested message and enum types in `FileOptions`.
548pub mod file_options {
549 /// Generated classes can be optimized for speed or code size.
550 #[derive(
551 Clone,
552 Copy,
553 Debug,
554 PartialEq,
555 Eq,
556 Hash,
557 PartialOrd,
558 Ord,
559 ::prost::Enumeration
560 )]
561 #[repr(i32)]
562 pub enum OptimizeMode {
563 /// Generate complete code for parsing, serialization,
564 Speed = 1,
565 /// etc.
566 ///
567 /// Use ReflectionOps to implement these methods.
568 CodeSize = 2,
569 /// Generate code using MessageLite and the lite runtime.
570 LiteRuntime = 3,
571 }
572 impl OptimizeMode {
573 /// String value of the enum field names used in the ProtoBuf definition.
574 ///
575 /// The values are not transformed in any way and thus are considered stable
576 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
577 pub fn as_str_name(&self) -> &'static str {
578 match self {
579 Self::Speed => "SPEED",
580 Self::CodeSize => "CODE_SIZE",
581 Self::LiteRuntime => "LITE_RUNTIME",
582 }
583 }
584 /// Creates an enum from field names used in the ProtoBuf definition.
585 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
586 match value {
587 "SPEED" => Some(Self::Speed),
588 "CODE_SIZE" => Some(Self::CodeSize),
589 "LITE_RUNTIME" => Some(Self::LiteRuntime),
590 _ => None,
591 }
592 }
593 }
594}
595#[derive(Clone, PartialEq, ::prost::Message)]
596pub struct MessageOptions {
597 /// Set true to use the old proto1 MessageSet wire format for extensions.
598 /// This is provided for backwards-compatibility with the MessageSet wire
599 /// format. You should not use this for any other reason: It's less
600 /// efficient, has fewer features, and is more complicated.
601 ///
602 /// The message must be defined exactly as follows:
603 /// message Foo {
604 /// option message_set_wire_format = true;
605 /// extensions 4 to max;
606 /// }
607 /// Note that the message cannot have any defined fields; MessageSets only
608 /// have extensions.
609 ///
610 /// All extensions of your type must be singular messages; e.g. they cannot
611 /// be int32s, enums, or repeated messages.
612 ///
613 /// Because this is an option, the above two restrictions are not enforced by
614 /// the protocol compiler.
615 #[prost(bool, optional, tag = "1", default = "false")]
616 pub message_set_wire_format: ::core::option::Option<bool>,
617 /// Disables the generation of the standard "descriptor()" accessor, which can
618 /// conflict with a field of the same name. This is meant to make migration
619 /// from proto1 easier; new code should avoid fields named "descriptor".
620 #[prost(bool, optional, tag = "2", default = "false")]
621 pub no_standard_descriptor_accessor: ::core::option::Option<bool>,
622 /// Is this message deprecated?
623 /// Depending on the target platform, this can emit Deprecated annotations
624 /// for the message, or it will be completely ignored; in the very least,
625 /// this is a formalization for deprecating messages.
626 #[prost(bool, optional, tag = "3", default = "false")]
627 pub deprecated: ::core::option::Option<bool>,
628 /// Whether the message is an automatically generated map entry type for the
629 /// maps field.
630 ///
631 /// For maps fields:
632 /// map\<KeyType, ValueType> map_field = 1;
633 /// The parsed descriptor looks like:
634 /// message MapFieldEntry {
635 /// option map_entry = true;
636 /// optional KeyType key = 1;
637 /// optional ValueType value = 2;
638 /// }
639 /// repeated MapFieldEntry map_field = 1;
640 ///
641 /// Implementations may choose not to generate the map_entry=true message, but
642 /// use a native map in the target language to hold the keys and values.
643 /// The reflection APIs in such implementations still need to work as
644 /// if the field is a repeated message field.
645 ///
646 /// NOTE: Do not set the option in .proto files. Always use the maps syntax
647 /// instead. The option should only be implicitly set by the proto compiler
648 /// parser.
649 #[prost(bool, optional, tag = "7")]
650 pub map_entry: ::core::option::Option<bool>,
651 /// The parser stores options it doesn't recognize here. See above.
652 #[prost(message, repeated, tag = "999")]
653 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
654}
655#[derive(Clone, PartialEq, ::prost::Message)]
656pub struct FieldOptions {
657 /// The ctype option instructs the C++ code generator to use a different
658 /// representation of the field than it normally would. See the specific
659 /// options below. This option is not yet implemented in the open source
660 /// release -- sorry, we'll try to include it in a future version!
661 #[prost(
662 enumeration = "field_options::CType",
663 optional,
664 tag = "1",
665 default = "String"
666 )]
667 pub ctype: ::core::option::Option<i32>,
668 /// The packed option can be enabled for repeated primitive fields to enable
669 /// a more efficient representation on the wire. Rather than repeatedly
670 /// writing the tag and type for each element, the entire array is encoded as
671 /// a single length-delimited blob. In proto3, only explicit setting it to
672 /// false will avoid using packed encoding.
673 #[prost(bool, optional, tag = "2")]
674 pub packed: ::core::option::Option<bool>,
675 /// The jstype option determines the JavaScript type used for values of the
676 /// field. The option is permitted only for 64 bit integral and fixed types
677 /// (int64, uint64, sint64, fixed64, sfixed64). A field with jstype JS_STRING
678 /// is represented as JavaScript string, which avoids loss of precision that
679 /// can happen when a large value is converted to a floating point JavaScript.
680 /// Specifying JS_NUMBER for the jstype causes the generated JavaScript code to
681 /// use the JavaScript "number" type. The behavior of the default option
682 /// JS_NORMAL is implementation dependent.
683 ///
684 /// This option is an enum to permit additional types to be added, e.g.
685 /// goog.math.Integer.
686 #[prost(
687 enumeration = "field_options::JsType",
688 optional,
689 tag = "6",
690 default = "JsNormal"
691 )]
692 pub jstype: ::core::option::Option<i32>,
693 /// Should this field be parsed lazily? Lazy applies only to message-type
694 /// fields. It means that when the outer message is initially parsed, the
695 /// inner message's contents will not be parsed but instead stored in encoded
696 /// form. The inner message will actually be parsed when it is first accessed.
697 ///
698 /// This is only a hint. Implementations are free to choose whether to use
699 /// eager or lazy parsing regardless of the value of this option. However,
700 /// setting this option true suggests that the protocol author believes that
701 /// using lazy parsing on this field is worth the additional bookkeeping
702 /// overhead typically needed to implement it.
703 ///
704 /// This option does not affect the public interface of any generated code;
705 /// all method signatures remain the same. Furthermore, thread-safety of the
706 /// interface is not affected by this option; const methods remain safe to
707 /// call from multiple threads concurrently, while non-const methods continue
708 /// to require exclusive access.
709 ///
710 /// Note that implementations may choose not to check required fields within
711 /// a lazy sub-message. That is, calling IsInitialized() on the outer message
712 /// may return true even if the inner message has missing required fields.
713 /// This is necessary because otherwise the inner message would have to be
714 /// parsed in order to perform the check, defeating the purpose of lazy
715 /// parsing. An implementation which chooses not to check required fields
716 /// must be consistent about it. That is, for any particular sub-message, the
717 /// implementation must either *always* check its required fields, or *never*
718 /// check its required fields, regardless of whether or not the message has
719 /// been parsed.
720 #[prost(bool, optional, tag = "5", default = "false")]
721 pub lazy: ::core::option::Option<bool>,
722 /// Is this field deprecated?
723 /// Depending on the target platform, this can emit Deprecated annotations
724 /// for accessors, or it will be completely ignored; in the very least, this
725 /// is a formalization for deprecating fields.
726 #[prost(bool, optional, tag = "3", default = "false")]
727 pub deprecated: ::core::option::Option<bool>,
728 /// For Google-internal migration only. Do not use.
729 #[prost(bool, optional, tag = "10", default = "false")]
730 pub weak: ::core::option::Option<bool>,
731 /// The parser stores options it doesn't recognize here. See above.
732 #[prost(message, repeated, tag = "999")]
733 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
734}
735/// Nested message and enum types in `FieldOptions`.
736pub mod field_options {
737 #[derive(
738 Clone,
739 Copy,
740 Debug,
741 PartialEq,
742 Eq,
743 Hash,
744 PartialOrd,
745 Ord,
746 ::prost::Enumeration
747 )]
748 #[repr(i32)]
749 pub enum CType {
750 /// Default mode.
751 String = 0,
752 Cord = 1,
753 StringPiece = 2,
754 }
755 impl CType {
756 /// String value of the enum field names used in the ProtoBuf definition.
757 ///
758 /// The values are not transformed in any way and thus are considered stable
759 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
760 pub fn as_str_name(&self) -> &'static str {
761 match self {
762 Self::String => "STRING",
763 Self::Cord => "CORD",
764 Self::StringPiece => "STRING_PIECE",
765 }
766 }
767 /// Creates an enum from field names used in the ProtoBuf definition.
768 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
769 match value {
770 "STRING" => Some(Self::String),
771 "CORD" => Some(Self::Cord),
772 "STRING_PIECE" => Some(Self::StringPiece),
773 _ => None,
774 }
775 }
776 }
777 #[derive(
778 Clone,
779 Copy,
780 Debug,
781 PartialEq,
782 Eq,
783 Hash,
784 PartialOrd,
785 Ord,
786 ::prost::Enumeration
787 )]
788 #[repr(i32)]
789 pub enum JsType {
790 /// Use the default type.
791 JsNormal = 0,
792 /// Use JavaScript strings.
793 JsString = 1,
794 /// Use JavaScript numbers.
795 JsNumber = 2,
796 }
797 impl JsType {
798 /// String value of the enum field names used in the ProtoBuf definition.
799 ///
800 /// The values are not transformed in any way and thus are considered stable
801 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
802 pub fn as_str_name(&self) -> &'static str {
803 match self {
804 Self::JsNormal => "JS_NORMAL",
805 Self::JsString => "JS_STRING",
806 Self::JsNumber => "JS_NUMBER",
807 }
808 }
809 /// Creates an enum from field names used in the ProtoBuf definition.
810 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
811 match value {
812 "JS_NORMAL" => Some(Self::JsNormal),
813 "JS_STRING" => Some(Self::JsString),
814 "JS_NUMBER" => Some(Self::JsNumber),
815 _ => None,
816 }
817 }
818 }
819}
820#[derive(Clone, PartialEq, ::prost::Message)]
821pub struct OneofOptions {
822 /// The parser stores options it doesn't recognize here. See above.
823 #[prost(message, repeated, tag = "999")]
824 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
825}
826#[derive(Clone, PartialEq, ::prost::Message)]
827pub struct EnumOptions {
828 /// Set this option to true to allow mapping different tag names to the same
829 /// value.
830 #[prost(bool, optional, tag = "2")]
831 pub allow_alias: ::core::option::Option<bool>,
832 /// Is this enum deprecated?
833 /// Depending on the target platform, this can emit Deprecated annotations
834 /// for the enum, or it will be completely ignored; in the very least, this
835 /// is a formalization for deprecating enums.
836 #[prost(bool, optional, tag = "3", default = "false")]
837 pub deprecated: ::core::option::Option<bool>,
838 /// The parser stores options it doesn't recognize here. See above.
839 #[prost(message, repeated, tag = "999")]
840 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
841}
842#[derive(Clone, PartialEq, ::prost::Message)]
843pub struct EnumValueOptions {
844 /// Is this enum value deprecated?
845 /// Depending on the target platform, this can emit Deprecated annotations
846 /// for the enum value, or it will be completely ignored; in the very least,
847 /// this is a formalization for deprecating enum values.
848 #[prost(bool, optional, tag = "1", default = "false")]
849 pub deprecated: ::core::option::Option<bool>,
850 /// The parser stores options it doesn't recognize here. See above.
851 #[prost(message, repeated, tag = "999")]
852 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
853}
854#[derive(Clone, PartialEq, ::prost::Message)]
855pub struct ServiceOptions {
856 /// Is this service deprecated?
857 /// Depending on the target platform, this can emit Deprecated annotations
858 /// for the service, or it will be completely ignored; in the very least,
859 /// this is a formalization for deprecating services.
860 #[prost(bool, optional, tag = "33", default = "false")]
861 pub deprecated: ::core::option::Option<bool>,
862 /// The parser stores options it doesn't recognize here. See above.
863 #[prost(message, repeated, tag = "999")]
864 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
865}
866#[derive(Clone, PartialEq, ::prost::Message)]
867pub struct MethodOptions {
868 /// Is this method deprecated?
869 /// Depending on the target platform, this can emit Deprecated annotations
870 /// for the method, or it will be completely ignored; in the very least,
871 /// this is a formalization for deprecating methods.
872 #[prost(bool, optional, tag = "33", default = "false")]
873 pub deprecated: ::core::option::Option<bool>,
874 #[prost(
875 enumeration = "method_options::IdempotencyLevel",
876 optional,
877 tag = "34",
878 default = "IdempotencyUnknown"
879 )]
880 pub idempotency_level: ::core::option::Option<i32>,
881 /// The parser stores options it doesn't recognize here. See above.
882 #[prost(message, repeated, tag = "999")]
883 pub uninterpreted_option: ::prost::alloc::vec::Vec<UninterpretedOption>,
884}
885/// Nested message and enum types in `MethodOptions`.
886pub mod method_options {
887 /// Is this method side-effect-free (or safe in HTTP parlance), or idempotent,
888 /// or neither? HTTP based RPC implementation may choose GET verb for safe
889 /// methods, and PUT verb for idempotent methods instead of the default POST.
890 #[derive(
891 Clone,
892 Copy,
893 Debug,
894 PartialEq,
895 Eq,
896 Hash,
897 PartialOrd,
898 Ord,
899 ::prost::Enumeration
900 )]
901 #[repr(i32)]
902 pub enum IdempotencyLevel {
903 IdempotencyUnknown = 0,
904 /// implies idempotent
905 NoSideEffects = 1,
906 /// idempotent, but may have side effects
907 Idempotent = 2,
908 }
909 impl IdempotencyLevel {
910 /// String value of the enum field names used in the ProtoBuf definition.
911 ///
912 /// The values are not transformed in any way and thus are considered stable
913 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
914 pub fn as_str_name(&self) -> &'static str {
915 match self {
916 Self::IdempotencyUnknown => "IDEMPOTENCY_UNKNOWN",
917 Self::NoSideEffects => "NO_SIDE_EFFECTS",
918 Self::Idempotent => "IDEMPOTENT",
919 }
920 }
921 /// Creates an enum from field names used in the ProtoBuf definition.
922 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
923 match value {
924 "IDEMPOTENCY_UNKNOWN" => Some(Self::IdempotencyUnknown),
925 "NO_SIDE_EFFECTS" => Some(Self::NoSideEffects),
926 "IDEMPOTENT" => Some(Self::Idempotent),
927 _ => None,
928 }
929 }
930 }
931}
932/// A message representing a option the parser does not recognize. This only
933/// appears in options protos created by the compiler::Parser class.
934/// DescriptorPool resolves these when building Descriptor objects. Therefore,
935/// options protos in descriptor objects (e.g. returned by Descriptor::options(),
936/// or produced by Descriptor::CopyTo()) will never have UninterpretedOptions
937/// in them.
938#[derive(Clone, PartialEq, ::prost::Message)]
939pub struct UninterpretedOption {
940 #[prost(message, repeated, tag = "2")]
941 pub name: ::prost::alloc::vec::Vec<uninterpreted_option::NamePart>,
942 /// The value of the uninterpreted option, in whatever type the tokenizer
943 /// identified it as during parsing. Exactly one of these should be set.
944 #[prost(string, optional, tag = "3")]
945 pub identifier_value: ::core::option::Option<::prost::alloc::string::String>,
946 #[prost(uint64, optional, tag = "4")]
947 pub positive_int_value: ::core::option::Option<u64>,
948 #[prost(int64, optional, tag = "5")]
949 pub negative_int_value: ::core::option::Option<i64>,
950 #[prost(double, optional, tag = "6")]
951 pub double_value: ::core::option::Option<f64>,
952 #[prost(bytes = "vec", optional, tag = "7")]
953 pub string_value: ::core::option::Option<::prost::alloc::vec::Vec<u8>>,
954 #[prost(string, optional, tag = "8")]
955 pub aggregate_value: ::core::option::Option<::prost::alloc::string::String>,
956}
957/// Nested message and enum types in `UninterpretedOption`.
958pub mod uninterpreted_option {
959 /// The name of the uninterpreted option. Each string represents a segment in
960 /// a dot-separated name. is_extension is true iff a segment represents an
961 /// extension (denoted with parentheses in options specs in .proto files).
962 /// E.g.,{ \["foo", false\], \["bar.baz", true\], \["qux", false\] } represents
963 /// "foo.(bar.baz).qux".
964 #[derive(Clone, PartialEq, ::prost::Message)]
965 pub struct NamePart {
966 #[prost(string, required, tag = "1")]
967 pub name_part: ::prost::alloc::string::String,
968 #[prost(bool, required, tag = "2")]
969 pub is_extension: bool,
970 }
971}
972/// Encapsulates information about the original source file from which a
973/// FileDescriptorProto was generated.
974#[derive(Clone, PartialEq, ::prost::Message)]
975pub struct SourceCodeInfo {
976 /// A Location identifies a piece of source code in a .proto file which
977 /// corresponds to a particular definition. This information is intended
978 /// to be useful to IDEs, code indexers, documentation generators, and similar
979 /// tools.
980 ///
981 /// For example, say we have a file like:
982 /// message Foo {
983 /// optional string foo = 1;
984 /// }
985 /// Let's look at just the field definition:
986 /// optional string foo = 1;
987 /// ^ ^^ ^^ ^ ^^^
988 /// a bc de f ghi
989 /// We have the following locations:
990 /// span path represents
991 /// \[a,i) \[ 4, 0, 2, 0 \] The whole field definition.
992 /// \[a,b) \[ 4, 0, 2, 0, 4 \] The label (optional).
993 /// \[c,d) \[ 4, 0, 2, 0, 5 \] The type (string).
994 /// \[e,f) \[ 4, 0, 2, 0, 1 \] The name (foo).
995 /// \[g,h) \[ 4, 0, 2, 0, 3 \] The number (1).
996 ///
997 /// Notes:
998 ///
999 /// * A location may refer to a repeated field itself (i.e. not to any
1000 /// particular index within it). This is used whenever a set of elements are
1001 /// logically enclosed in a single code segment. For example, an entire
1002 /// extend block (possibly containing multiple extension definitions) will
1003 /// have an outer location whose path refers to the "extensions" repeated
1004 /// field without an index.
1005 /// * Multiple locations may have the same path. This happens when a single
1006 /// logical declaration is spread out across multiple places. The most
1007 /// obvious example is the "extend" block again -- there may be multiple
1008 /// extend blocks in the same scope, each of which will have the same path.
1009 /// * A location's span is not always a subset of its parent's span. For
1010 /// example, the "extendee" of an extension declaration appears at the
1011 /// beginning of the "extend" block and is shared by all extensions within
1012 /// the block.
1013 /// * Just because a location's span is a subset of some other location's span
1014 /// does not mean that it is a descendant. For example, a "group" defines
1015 /// both a type and a field in a single declaration. Thus, the locations
1016 /// corresponding to the type and field and their components will overlap.
1017 /// * Code which tries to interpret locations should probably be designed to
1018 /// ignore those that it doesn't understand, as more types of locations could
1019 /// be recorded in the future.
1020 #[prost(message, repeated, tag = "1")]
1021 pub location: ::prost::alloc::vec::Vec<source_code_info::Location>,
1022}
1023/// Nested message and enum types in `SourceCodeInfo`.
1024pub mod source_code_info {
1025 #[derive(Clone, PartialEq, ::prost::Message)]
1026 pub struct Location {
1027 /// Identifies which part of the FileDescriptorProto was defined at this
1028 /// location.
1029 ///
1030 /// Each element is a field number or an index. They form a path from
1031 /// the root FileDescriptorProto to the place where the definition. For
1032 /// example, this path:
1033 /// \[ 4, 3, 2, 7, 1 \]
1034 /// refers to:
1035 /// file.message_type(3) // 4, 3
1036 /// .field(7) // 2, 7
1037 /// .name() // 1
1038 /// This is because FileDescriptorProto.message_type has field number 4:
1039 /// repeated DescriptorProto message_type = 4;
1040 /// and DescriptorProto.field has field number 2:
1041 /// repeated FieldDescriptorProto field = 2;
1042 /// and FieldDescriptorProto.name has field number 1:
1043 /// optional string name = 1;
1044 ///
1045 /// Thus, the above path gives the location of a field name. If we removed
1046 /// the last element:
1047 /// \[ 4, 3, 2, 7 \]
1048 /// this path refers to the whole field declaration (from the beginning
1049 /// of the label to the terminating semicolon).
1050 #[prost(int32, repeated, tag = "1")]
1051 pub path: ::prost::alloc::vec::Vec<i32>,
1052 /// Always has exactly three or four elements: start line, start column,
1053 /// end line (optional, otherwise assumed same as start line), end column.
1054 /// These are packed into a single field for efficiency. Note that line
1055 /// and column numbers are zero-based -- typically you will want to add
1056 /// 1 to each before displaying to a user.
1057 #[prost(int32, repeated, tag = "2")]
1058 pub span: ::prost::alloc::vec::Vec<i32>,
1059 /// If this SourceCodeInfo represents a complete declaration, these are any
1060 /// comments appearing before and after the declaration which appear to be
1061 /// attached to the declaration.
1062 ///
1063 /// A series of line comments appearing on consecutive lines, with no other
1064 /// tokens appearing on those lines, will be treated as a single comment.
1065 ///
1066 /// leading_detached_comments will keep paragraphs of comments that appear
1067 /// before (but not connected to) the current element. Each paragraph,
1068 /// separated by empty lines, will be one comment element in the repeated
1069 /// field.
1070 ///
1071 /// Only the comment content is provided; comment markers (e.g. //) are
1072 /// stripped out. For block comments, leading whitespace and an asterisk
1073 /// will be stripped from the beginning of each line other than the first.
1074 /// Newlines are included in the output.
1075 ///
1076 /// Examples:
1077 ///
1078 /// optional int32 foo = 1; // Comment attached to foo.
1079 /// // Comment attached to bar.
1080 /// optional int32 bar = 2;
1081 ///
1082 /// optional string baz = 3;
1083 /// // Comment attached to baz.
1084 /// // Another line attached to baz.
1085 ///
1086 /// // Comment attached to qux.
1087 /// //
1088 /// // Another line attached to qux.
1089 /// optional double qux = 4;
1090 ///
1091 /// // Detached comment for corge. This is not leading or trailing comments
1092 /// // to qux or corge because there are blank lines separating it from
1093 /// // both.
1094 ///
1095 /// // Detached comment for corge paragraph 2.
1096 ///
1097 /// optional string corge = 5;
1098 /// /\* Block comment attached
1099 /// \* to corge. Leading asterisks
1100 /// \* will be removed. */
1101 /// /* Block comment attached to
1102 /// \* grault. \*/
1103 /// optional int32 grault = 6;
1104 ///
1105 /// // ignored detached comments.
1106 #[prost(string, optional, tag = "3")]
1107 pub leading_comments: ::core::option::Option<::prost::alloc::string::String>,
1108 #[prost(string, optional, tag = "4")]
1109 pub trailing_comments: ::core::option::Option<::prost::alloc::string::String>,
1110 #[prost(string, repeated, tag = "6")]
1111 pub leading_detached_comments: ::prost::alloc::vec::Vec<
1112 ::prost::alloc::string::String,
1113 >,
1114 }
1115}
1116/// Describes the relationship between generated code and its original source
1117/// file. A GeneratedCodeInfo message is associated with only one generated
1118/// source file, but may contain references to different source .proto files.
1119#[derive(Clone, PartialEq, ::prost::Message)]
1120pub struct GeneratedCodeInfo {
1121 /// An Annotation connects some span of text in generated code to an element
1122 /// of its generating .proto file.
1123 #[prost(message, repeated, tag = "1")]
1124 pub annotation: ::prost::alloc::vec::Vec<generated_code_info::Annotation>,
1125}
1126/// Nested message and enum types in `GeneratedCodeInfo`.
1127pub mod generated_code_info {
1128 #[derive(Clone, PartialEq, ::prost::Message)]
1129 pub struct Annotation {
1130 /// Identifies the element in the original source .proto file. This field
1131 /// is formatted the same as SourceCodeInfo.Location.path.
1132 #[prost(int32, repeated, tag = "1")]
1133 pub path: ::prost::alloc::vec::Vec<i32>,
1134 /// Identifies the filesystem path to the original source .proto.
1135 #[prost(string, optional, tag = "2")]
1136 pub source_file: ::core::option::Option<::prost::alloc::string::String>,
1137 /// Identifies the starting offset in bytes in the generated code
1138 /// that relates to the identified object.
1139 #[prost(int32, optional, tag = "3")]
1140 pub begin: ::core::option::Option<i32>,
1141 /// Identifies the ending offset in bytes in the generated code that
1142 /// relates to the identified offset. The end offset should be one past
1143 /// the last relevant byte (so the length of the text = end - begin).
1144 #[prost(int32, optional, tag = "4")]
1145 pub end: ::core::option::Option<i32>,
1146 }
1147}
1148/// `Any` contains an arbitrary serialized protocol buffer message along with a
1149/// URL that describes the type of the serialized message.
1150///
1151/// Protobuf library provides support to pack/unpack Any values in the form
1152/// of utility functions or additional generated methods of the Any type.
1153///
1154/// Example 1: Pack and unpack a message in C++.
1155///
1156/// ```text
1157/// Foo foo = ...;
1158/// Any any;
1159/// any.PackFrom(foo);
1160/// ...
1161/// if (any.UnpackTo(&foo)) {
1162/// ...
1163/// }
1164/// ```
1165///
1166/// Example 2: Pack and unpack a message in Java.
1167///
1168/// ```text
1169/// Foo foo = ...;
1170/// Any any = Any.pack(foo);
1171/// ...
1172/// if (any.is(Foo.class)) {
1173/// foo = any.unpack(Foo.class);
1174/// }
1175/// ```
1176///
1177/// Example 3: Pack and unpack a message in Python.
1178///
1179/// ```text
1180/// foo = Foo(...)
1181/// any = Any()
1182/// any.Pack(foo)
1183/// ...
1184/// if any.Is(Foo.DESCRIPTOR):
1185/// any.Unpack(foo)
1186/// ...
1187/// ```
1188///
1189/// Example 4: Pack and unpack a message in Go
1190///
1191/// ```text
1192/// foo := &pb.Foo{...}
1193/// any, err := anypb.New(foo)
1194/// if err != nil {
1195/// ...
1196/// }
1197/// ...
1198/// foo := &pb.Foo{}
1199/// if err := any.UnmarshalTo(foo); err != nil {
1200/// ...
1201/// }
1202/// ```
1203///
1204/// The pack methods provided by protobuf library will by default use
1205/// 'type.googleapis.com/full.type.name' as the type URL and the unpack
1206/// methods only use the fully qualified type name after the last '/'
1207/// in the type URL, for example "foo.bar.com/x/y.z" will yield type
1208/// name "y.z".
1209///
1210/// # JSON
1211///
1212/// The JSON representation of an `Any` value uses the regular
1213/// representation of the deserialized, embedded message, with an
1214/// additional field `@type` which contains the type URL. Example:
1215///
1216/// ```text
1217/// package google.profile;
1218/// message Person {
1219/// string first_name = 1;
1220/// string last_name = 2;
1221/// }
1222///
1223/// {
1224/// "@type": "type.googleapis.com/google.profile.Person",
1225/// "firstName": <string>,
1226/// "lastName": <string>
1227/// }
1228/// ```
1229///
1230/// If the embedded message type is well-known and has a custom JSON
1231/// representation, that representation will be embedded adding a field
1232/// `value` which holds the custom JSON in addition to the `@type`
1233/// field. Example (for message \[google.protobuf.Duration\]\[\]):
1234///
1235/// ```text
1236/// {
1237/// "@type": "type.googleapis.com/google.protobuf.Duration",
1238/// "value": "1.212s"
1239/// }
1240/// ```
1241#[derive(Clone, PartialEq, ::prost::Message)]
1242pub struct Any {
1243 /// A URL/resource name that uniquely identifies the type of the serialized
1244 /// protocol buffer message. This string must contain at least
1245 /// one "/" character. The last segment of the URL's path must represent
1246 /// the fully qualified name of the type (as in
1247 /// `path/google.protobuf.Duration`). The name should be in a canonical form
1248 /// (e.g., leading "." is not accepted).
1249 ///
1250 /// In practice, teams usually precompile into the binary all types that they
1251 /// expect it to use in the context of Any. However, for URLs which use the
1252 /// scheme `http`, `https`, or no scheme, one can optionally set up a type
1253 /// server that maps type URLs to message definitions as follows:
1254 ///
1255 /// * If no scheme is provided, `https` is assumed.
1256 /// * An HTTP GET on the URL must yield a \[google.protobuf.Type\]\[\]
1257 /// value in binary format, or produce an error.
1258 /// * Applications are allowed to cache lookup results based on the
1259 /// URL, or have them precompiled into a binary to avoid any
1260 /// lookup. Therefore, binary compatibility needs to be preserved
1261 /// on changes to types. (Use versioned type names to manage
1262 /// breaking changes.)
1263 ///
1264 /// Note: this functionality is not currently available in the official
1265 /// protobuf release, and it is not used for type URLs beginning with
1266 /// type.googleapis.com.
1267 ///
1268 /// Schemes other than `http`, `https` (or the empty scheme) might be
1269 /// used with implementation specific semantics.
1270 #[prost(string, tag = "1")]
1271 pub type_url: ::prost::alloc::string::String,
1272 /// Must be a valid serialized protocol buffer of the above specified type.
1273 #[prost(bytes = "vec", tag = "2")]
1274 pub value: ::prost::alloc::vec::Vec<u8>,
1275}
1276/// `SourceContext` represents information about the source of a
1277/// protobuf element, like the file in which it is defined.
1278#[derive(Clone, PartialEq, ::prost::Message)]
1279pub struct SourceContext {
1280 /// The path-qualified name of the .proto file that contained the associated
1281 /// protobuf element. For example: `"google/protobuf/source_context.proto"`.
1282 #[prost(string, tag = "1")]
1283 pub file_name: ::prost::alloc::string::String,
1284}
1285/// A protocol buffer message type.
1286#[derive(Clone, PartialEq, ::prost::Message)]
1287pub struct Type {
1288 /// The fully qualified message name.
1289 #[prost(string, tag = "1")]
1290 pub name: ::prost::alloc::string::String,
1291 /// The list of fields.
1292 #[prost(message, repeated, tag = "2")]
1293 pub fields: ::prost::alloc::vec::Vec<Field>,
1294 /// The list of types appearing in `oneof` definitions in this type.
1295 #[prost(string, repeated, tag = "3")]
1296 pub oneofs: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
1297 /// The protocol buffer options.
1298 #[prost(message, repeated, tag = "4")]
1299 pub options: ::prost::alloc::vec::Vec<Option>,
1300 /// The source context.
1301 #[prost(message, optional, tag = "5")]
1302 pub source_context: ::core::option::Option<SourceContext>,
1303 /// The source syntax.
1304 #[prost(enumeration = "Syntax", tag = "6")]
1305 pub syntax: i32,
1306}
1307/// A single field of a message type.
1308#[derive(Clone, PartialEq, ::prost::Message)]
1309pub struct Field {
1310 /// The field type.
1311 #[prost(enumeration = "field::Kind", tag = "1")]
1312 pub kind: i32,
1313 /// The field cardinality.
1314 #[prost(enumeration = "field::Cardinality", tag = "2")]
1315 pub cardinality: i32,
1316 /// The field number.
1317 #[prost(int32, tag = "3")]
1318 pub number: i32,
1319 /// The field name.
1320 #[prost(string, tag = "4")]
1321 pub name: ::prost::alloc::string::String,
1322 /// The field type URL, without the scheme, for message or enumeration
1323 /// types. Example: `"type.googleapis.com/google.protobuf.Timestamp"`.
1324 #[prost(string, tag = "6")]
1325 pub type_url: ::prost::alloc::string::String,
1326 /// The index of the field type in `Type.oneofs`, for message or enumeration
1327 /// types. The first type has index 1; zero means the type is not in the list.
1328 #[prost(int32, tag = "7")]
1329 pub oneof_index: i32,
1330 /// Whether to use alternative packed wire representation.
1331 #[prost(bool, tag = "8")]
1332 pub packed: bool,
1333 /// The protocol buffer options.
1334 #[prost(message, repeated, tag = "9")]
1335 pub options: ::prost::alloc::vec::Vec<Option>,
1336 /// The field JSON name.
1337 #[prost(string, tag = "10")]
1338 pub json_name: ::prost::alloc::string::String,
1339 /// The string value of the default value of this field. Proto2 syntax only.
1340 #[prost(string, tag = "11")]
1341 pub default_value: ::prost::alloc::string::String,
1342}
1343/// Nested message and enum types in `Field`.
1344pub mod field {
1345 /// Basic field types.
1346 #[derive(
1347 Clone,
1348 Copy,
1349 Debug,
1350 PartialEq,
1351 Eq,
1352 Hash,
1353 PartialOrd,
1354 Ord,
1355 ::prost::Enumeration
1356 )]
1357 #[repr(i32)]
1358 pub enum Kind {
1359 /// Field type unknown.
1360 TypeUnknown = 0,
1361 /// Field type double.
1362 TypeDouble = 1,
1363 /// Field type float.
1364 TypeFloat = 2,
1365 /// Field type int64.
1366 TypeInt64 = 3,
1367 /// Field type uint64.
1368 TypeUint64 = 4,
1369 /// Field type int32.
1370 TypeInt32 = 5,
1371 /// Field type fixed64.
1372 TypeFixed64 = 6,
1373 /// Field type fixed32.
1374 TypeFixed32 = 7,
1375 /// Field type bool.
1376 TypeBool = 8,
1377 /// Field type string.
1378 TypeString = 9,
1379 /// Field type group. Proto2 syntax only, and deprecated.
1380 TypeGroup = 10,
1381 /// Field type message.
1382 TypeMessage = 11,
1383 /// Field type bytes.
1384 TypeBytes = 12,
1385 /// Field type uint32.
1386 TypeUint32 = 13,
1387 /// Field type enum.
1388 TypeEnum = 14,
1389 /// Field type sfixed32.
1390 TypeSfixed32 = 15,
1391 /// Field type sfixed64.
1392 TypeSfixed64 = 16,
1393 /// Field type sint32.
1394 TypeSint32 = 17,
1395 /// Field type sint64.
1396 TypeSint64 = 18,
1397 }
1398 impl Kind {
1399 /// String value of the enum field names used in the ProtoBuf definition.
1400 ///
1401 /// The values are not transformed in any way and thus are considered stable
1402 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
1403 pub fn as_str_name(&self) -> &'static str {
1404 match self {
1405 Self::TypeUnknown => "TYPE_UNKNOWN",
1406 Self::TypeDouble => "TYPE_DOUBLE",
1407 Self::TypeFloat => "TYPE_FLOAT",
1408 Self::TypeInt64 => "TYPE_INT64",
1409 Self::TypeUint64 => "TYPE_UINT64",
1410 Self::TypeInt32 => "TYPE_INT32",
1411 Self::TypeFixed64 => "TYPE_FIXED64",
1412 Self::TypeFixed32 => "TYPE_FIXED32",
1413 Self::TypeBool => "TYPE_BOOL",
1414 Self::TypeString => "TYPE_STRING",
1415 Self::TypeGroup => "TYPE_GROUP",
1416 Self::TypeMessage => "TYPE_MESSAGE",
1417 Self::TypeBytes => "TYPE_BYTES",
1418 Self::TypeUint32 => "TYPE_UINT32",
1419 Self::TypeEnum => "TYPE_ENUM",
1420 Self::TypeSfixed32 => "TYPE_SFIXED32",
1421 Self::TypeSfixed64 => "TYPE_SFIXED64",
1422 Self::TypeSint32 => "TYPE_SINT32",
1423 Self::TypeSint64 => "TYPE_SINT64",
1424 }
1425 }
1426 /// Creates an enum from field names used in the ProtoBuf definition.
1427 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
1428 match value {
1429 "TYPE_UNKNOWN" => Some(Self::TypeUnknown),
1430 "TYPE_DOUBLE" => Some(Self::TypeDouble),
1431 "TYPE_FLOAT" => Some(Self::TypeFloat),
1432 "TYPE_INT64" => Some(Self::TypeInt64),
1433 "TYPE_UINT64" => Some(Self::TypeUint64),
1434 "TYPE_INT32" => Some(Self::TypeInt32),
1435 "TYPE_FIXED64" => Some(Self::TypeFixed64),
1436 "TYPE_FIXED32" => Some(Self::TypeFixed32),
1437 "TYPE_BOOL" => Some(Self::TypeBool),
1438 "TYPE_STRING" => Some(Self::TypeString),
1439 "TYPE_GROUP" => Some(Self::TypeGroup),
1440 "TYPE_MESSAGE" => Some(Self::TypeMessage),
1441 "TYPE_BYTES" => Some(Self::TypeBytes),
1442 "TYPE_UINT32" => Some(Self::TypeUint32),
1443 "TYPE_ENUM" => Some(Self::TypeEnum),
1444 "TYPE_SFIXED32" => Some(Self::TypeSfixed32),
1445 "TYPE_SFIXED64" => Some(Self::TypeSfixed64),
1446 "TYPE_SINT32" => Some(Self::TypeSint32),
1447 "TYPE_SINT64" => Some(Self::TypeSint64),
1448 _ => None,
1449 }
1450 }
1451 }
1452 /// Whether a field is optional, required, or repeated.
1453 #[derive(
1454 Clone,
1455 Copy,
1456 Debug,
1457 PartialEq,
1458 Eq,
1459 Hash,
1460 PartialOrd,
1461 Ord,
1462 ::prost::Enumeration
1463 )]
1464 #[repr(i32)]
1465 pub enum Cardinality {
1466 /// For fields with unknown cardinality.
1467 Unknown = 0,
1468 /// For optional fields.
1469 Optional = 1,
1470 /// For required fields. Proto2 syntax only.
1471 Required = 2,
1472 /// For repeated fields.
1473 Repeated = 3,
1474 }
1475 impl Cardinality {
1476 /// String value of the enum field names used in the ProtoBuf definition.
1477 ///
1478 /// The values are not transformed in any way and thus are considered stable
1479 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
1480 pub fn as_str_name(&self) -> &'static str {
1481 match self {
1482 Self::Unknown => "CARDINALITY_UNKNOWN",
1483 Self::Optional => "CARDINALITY_OPTIONAL",
1484 Self::Required => "CARDINALITY_REQUIRED",
1485 Self::Repeated => "CARDINALITY_REPEATED",
1486 }
1487 }
1488 /// Creates an enum from field names used in the ProtoBuf definition.
1489 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
1490 match value {
1491 "CARDINALITY_UNKNOWN" => Some(Self::Unknown),
1492 "CARDINALITY_OPTIONAL" => Some(Self::Optional),
1493 "CARDINALITY_REQUIRED" => Some(Self::Required),
1494 "CARDINALITY_REPEATED" => Some(Self::Repeated),
1495 _ => None,
1496 }
1497 }
1498 }
1499}
1500/// Enum type definition.
1501#[derive(Clone, PartialEq, ::prost::Message)]
1502pub struct Enum {
1503 /// Enum type name.
1504 #[prost(string, tag = "1")]
1505 pub name: ::prost::alloc::string::String,
1506 /// Enum value definitions.
1507 #[prost(message, repeated, tag = "2")]
1508 pub enumvalue: ::prost::alloc::vec::Vec<EnumValue>,
1509 /// Protocol buffer options.
1510 #[prost(message, repeated, tag = "3")]
1511 pub options: ::prost::alloc::vec::Vec<Option>,
1512 /// The source context.
1513 #[prost(message, optional, tag = "4")]
1514 pub source_context: ::core::option::Option<SourceContext>,
1515 /// The source syntax.
1516 #[prost(enumeration = "Syntax", tag = "5")]
1517 pub syntax: i32,
1518}
1519/// Enum value definition.
1520#[derive(Clone, PartialEq, ::prost::Message)]
1521pub struct EnumValue {
1522 /// Enum value name.
1523 #[prost(string, tag = "1")]
1524 pub name: ::prost::alloc::string::String,
1525 /// Enum value number.
1526 #[prost(int32, tag = "2")]
1527 pub number: i32,
1528 /// Protocol buffer options.
1529 #[prost(message, repeated, tag = "3")]
1530 pub options: ::prost::alloc::vec::Vec<Option>,
1531}
1532/// A protocol buffer option, which can be attached to a message, field,
1533/// enumeration, etc.
1534#[derive(Clone, PartialEq, ::prost::Message)]
1535pub struct Option {
1536 /// The option's name. For protobuf built-in options (options defined in
1537 /// descriptor.proto), this is the short name. For example, `"map_entry"`.
1538 /// For custom options, it should be the fully-qualified name. For example,
1539 /// `"google.api.http"`.
1540 #[prost(string, tag = "1")]
1541 pub name: ::prost::alloc::string::String,
1542 /// The option's value packed in an Any message. If the value is a primitive,
1543 /// the corresponding wrapper type defined in google/protobuf/wrappers.proto
1544 /// should be used. If the value is an enum, it should be stored as an int32
1545 /// value using the google.protobuf.Int32Value type.
1546 #[prost(message, optional, tag = "2")]
1547 pub value: ::core::option::Option<Any>,
1548}
1549/// The syntax in which a protocol buffer element is defined.
1550#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
1551#[repr(i32)]
1552pub enum Syntax {
1553 /// Syntax `proto2`.
1554 Proto2 = 0,
1555 /// Syntax `proto3`.
1556 Proto3 = 1,
1557}
1558impl Syntax {
1559 /// String value of the enum field names used in the ProtoBuf definition.
1560 ///
1561 /// The values are not transformed in any way and thus are considered stable
1562 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
1563 pub fn as_str_name(&self) -> &'static str {
1564 match self {
1565 Self::Proto2 => "SYNTAX_PROTO2",
1566 Self::Proto3 => "SYNTAX_PROTO3",
1567 }
1568 }
1569 /// Creates an enum from field names used in the ProtoBuf definition.
1570 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
1571 match value {
1572 "SYNTAX_PROTO2" => Some(Self::Proto2),
1573 "SYNTAX_PROTO3" => Some(Self::Proto3),
1574 _ => None,
1575 }
1576 }
1577}
1578/// Api is a light-weight descriptor for an API Interface.
1579///
1580/// Interfaces are also described as "protocol buffer services" in some contexts,
1581/// such as by the "service" keyword in a .proto file, but they are different
1582/// from API Services, which represent a concrete implementation of an interface
1583/// as opposed to simply a description of methods and bindings. They are also
1584/// sometimes simply referred to as "APIs" in other contexts, such as the name of
1585/// this message itself. See <https://cloud.google.com/apis/design/glossary> for
1586/// detailed terminology.
1587#[derive(Clone, PartialEq, ::prost::Message)]
1588pub struct Api {
1589 /// The fully qualified name of this interface, including package name
1590 /// followed by the interface's simple name.
1591 #[prost(string, tag = "1")]
1592 pub name: ::prost::alloc::string::String,
1593 /// The methods of this interface, in unspecified order.
1594 #[prost(message, repeated, tag = "2")]
1595 pub methods: ::prost::alloc::vec::Vec<Method>,
1596 /// Any metadata attached to the interface.
1597 #[prost(message, repeated, tag = "3")]
1598 pub options: ::prost::alloc::vec::Vec<Option>,
1599 /// A version string for this interface. If specified, must have the form
1600 /// `major-version.minor-version`, as in `1.10`. If the minor version is
1601 /// omitted, it defaults to zero. If the entire version field is empty, the
1602 /// major version is derived from the package name, as outlined below. If the
1603 /// field is not empty, the version in the package name will be verified to be
1604 /// consistent with what is provided here.
1605 ///
1606 /// The versioning schema uses [semantic
1607 /// versioning](<http://semver.org>) where the major version number
1608 /// indicates a breaking change and the minor version an additive,
1609 /// non-breaking change. Both version numbers are signals to users
1610 /// what to expect from different versions, and should be carefully
1611 /// chosen based on the product plan.
1612 ///
1613 /// The major version is also reflected in the package name of the
1614 /// interface, which must end in `v<major-version>`, as in
1615 /// `google.feature.v1`. For major versions 0 and 1, the suffix can
1616 /// be omitted. Zero major versions must only be used for
1617 /// experimental, non-GA interfaces.
1618 #[prost(string, tag = "4")]
1619 pub version: ::prost::alloc::string::String,
1620 /// Source context for the protocol buffer service represented by this
1621 /// message.
1622 #[prost(message, optional, tag = "5")]
1623 pub source_context: ::core::option::Option<SourceContext>,
1624 /// Included interfaces. See \[Mixin\]\[\].
1625 #[prost(message, repeated, tag = "6")]
1626 pub mixins: ::prost::alloc::vec::Vec<Mixin>,
1627 /// The source syntax of the service.
1628 #[prost(enumeration = "Syntax", tag = "7")]
1629 pub syntax: i32,
1630}
1631/// Method represents a method of an API interface.
1632#[derive(Clone, PartialEq, ::prost::Message)]
1633pub struct Method {
1634 /// The simple name of this method.
1635 #[prost(string, tag = "1")]
1636 pub name: ::prost::alloc::string::String,
1637 /// A URL of the input message type.
1638 #[prost(string, tag = "2")]
1639 pub request_type_url: ::prost::alloc::string::String,
1640 /// If true, the request is streamed.
1641 #[prost(bool, tag = "3")]
1642 pub request_streaming: bool,
1643 /// The URL of the output message type.
1644 #[prost(string, tag = "4")]
1645 pub response_type_url: ::prost::alloc::string::String,
1646 /// If true, the response is streamed.
1647 #[prost(bool, tag = "5")]
1648 pub response_streaming: bool,
1649 /// Any metadata attached to the method.
1650 #[prost(message, repeated, tag = "6")]
1651 pub options: ::prost::alloc::vec::Vec<Option>,
1652 /// The source syntax of this method.
1653 #[prost(enumeration = "Syntax", tag = "7")]
1654 pub syntax: i32,
1655}
1656/// Declares an API Interface to be included in this interface. The including
1657/// interface must redeclare all the methods from the included interface, but
1658/// documentation and options are inherited as follows:
1659///
1660/// * If after comment and whitespace stripping, the documentation
1661/// string of the redeclared method is empty, it will be inherited
1662/// from the original method.
1663///
1664/// * Each annotation belonging to the service config (http,
1665/// visibility) which is not set in the redeclared method will be
1666/// inherited.
1667///
1668/// * If an http annotation is inherited, the path pattern will be
1669/// modified as follows. Any version prefix will be replaced by the
1670/// version of the including interface plus the \[root\]\[\] path if
1671/// specified.
1672///
1673/// Example of a simple mixin:
1674///
1675/// ```text
1676/// package google.acl.v1;
1677/// service AccessControl {
1678/// // Get the underlying ACL object.
1679/// rpc GetAcl(GetAclRequest) returns (Acl) {
1680/// option (google.api.http).get = "/v1/{resource=**}:getAcl";
1681/// }
1682/// }
1683///
1684/// package google.storage.v2;
1685/// service Storage {
1686/// rpc GetAcl(GetAclRequest) returns (Acl);
1687///
1688/// // Get a data record.
1689/// rpc GetData(GetDataRequest) returns (Data) {
1690/// option (google.api.http).get = "/v2/{resource=**}";
1691/// }
1692/// }
1693/// ```
1694///
1695/// Example of a mixin configuration:
1696///
1697/// ```text
1698/// apis:
1699/// - name: google.storage.v2.Storage
1700/// mixins:
1701/// - name: google.acl.v1.AccessControl
1702/// ```
1703///
1704/// The mixin construct implies that all methods in `AccessControl` are
1705/// also declared with same name and request/response types in
1706/// `Storage`. A documentation generator or annotation processor will
1707/// see the effective `Storage.GetAcl` method after inheriting
1708/// documentation and annotations as follows:
1709///
1710/// ```text
1711/// service Storage {
1712/// // Get the underlying ACL object.
1713/// rpc GetAcl(GetAclRequest) returns (Acl) {
1714/// option (google.api.http).get = "/v2/{resource=**}:getAcl";
1715/// }
1716/// ...
1717/// }
1718/// ```
1719///
1720/// Note how the version in the path pattern changed from `v1` to `v2`.
1721///
1722/// If the `root` field in the mixin is specified, it should be a
1723/// relative path under which inherited HTTP paths are placed. Example:
1724///
1725/// ```text
1726/// apis:
1727/// - name: google.storage.v2.Storage
1728/// mixins:
1729/// - name: google.acl.v1.AccessControl
1730/// root: acls
1731/// ```
1732///
1733/// This implies the following inherited HTTP annotation:
1734///
1735/// ```text
1736/// service Storage {
1737/// // Get the underlying ACL object.
1738/// rpc GetAcl(GetAclRequest) returns (Acl) {
1739/// option (google.api.http).get = "/v2/acls/{resource=**}:getAcl";
1740/// }
1741/// ...
1742/// }
1743/// ```
1744#[derive(Clone, PartialEq, ::prost::Message)]
1745pub struct Mixin {
1746 /// The fully qualified name of the interface which is included.
1747 #[prost(string, tag = "1")]
1748 pub name: ::prost::alloc::string::String,
1749 /// If non-empty specifies a path under which inherited HTTP paths
1750 /// are rooted.
1751 #[prost(string, tag = "2")]
1752 pub root: ::prost::alloc::string::String,
1753}
1754/// A Duration represents a signed, fixed-length span of time represented
1755/// as a count of seconds and fractions of seconds at nanosecond
1756/// resolution. It is independent of any calendar and concepts like "day"
1757/// or "month". It is related to Timestamp in that the difference between
1758/// two Timestamp values is a Duration and it can be added or subtracted
1759/// from a Timestamp. Range is approximately +-10,000 years.
1760///
1761/// # Examples
1762///
1763/// Example 1: Compute Duration from two Timestamps in pseudo code.
1764///
1765/// ```text
1766/// Timestamp start = ...;
1767/// Timestamp end = ...;
1768/// Duration duration = ...;
1769///
1770/// duration.seconds = end.seconds - start.seconds;
1771/// duration.nanos = end.nanos - start.nanos;
1772///
1773/// if (duration.seconds < 0 && duration.nanos > 0) {
1774/// duration.seconds += 1;
1775/// duration.nanos -= 1000000000;
1776/// } else if (duration.seconds > 0 && duration.nanos < 0) {
1777/// duration.seconds -= 1;
1778/// duration.nanos += 1000000000;
1779/// }
1780/// ```
1781///
1782/// Example 2: Compute Timestamp from Timestamp + Duration in pseudo code.
1783///
1784/// ```text
1785/// Timestamp start = ...;
1786/// Duration duration = ...;
1787/// Timestamp end = ...;
1788///
1789/// end.seconds = start.seconds + duration.seconds;
1790/// end.nanos = start.nanos + duration.nanos;
1791///
1792/// if (end.nanos < 0) {
1793/// end.seconds -= 1;
1794/// end.nanos += 1000000000;
1795/// } else if (end.nanos >= 1000000000) {
1796/// end.seconds += 1;
1797/// end.nanos -= 1000000000;
1798/// }
1799/// ```
1800///
1801/// Example 3: Compute Duration from datetime.timedelta in Python.
1802///
1803/// ```text
1804/// td = datetime.timedelta(days=3, minutes=10)
1805/// duration = Duration()
1806/// duration.FromTimedelta(td)
1807/// ```
1808///
1809/// # JSON Mapping
1810///
1811/// In JSON format, the Duration type is encoded as a string rather than an
1812/// object, where the string ends in the suffix "s" (indicating seconds) and
1813/// is preceded by the number of seconds, with nanoseconds expressed as
1814/// fractional seconds. For example, 3 seconds with 0 nanoseconds should be
1815/// encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should
1816/// be expressed in JSON format as "3.000000001s", and 3 seconds and 1
1817/// microsecond should be expressed in JSON format as "3.000001s".
1818#[derive(Clone, Copy, PartialEq, ::prost::Message)]
1819pub struct Duration {
1820 /// Signed seconds of the span of time. Must be from -315,576,000,000
1821 /// to +315,576,000,000 inclusive. Note: these bounds are computed from:
1822 /// 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
1823 #[prost(int64, tag = "1")]
1824 pub seconds: i64,
1825 /// Signed fractions of a second at nanosecond resolution of the span
1826 /// of time. Durations less than one second are represented with a 0
1827 /// `seconds` field and a positive or negative `nanos` field. For durations
1828 /// of one second or more, a non-zero value for the `nanos` field must be
1829 /// of the same sign as the `seconds` field. Must be from -999,999,999
1830 /// to +999,999,999 inclusive.
1831 #[prost(int32, tag = "2")]
1832 pub nanos: i32,
1833}
1834/// `FieldMask` represents a set of symbolic field paths, for example:
1835///
1836/// ```text
1837/// paths: "f.a"
1838/// paths: "f.b.d"
1839/// ```
1840///
1841/// Here `f` represents a field in some root message, `a` and `b`
1842/// fields in the message found in `f`, and `d` a field found in the
1843/// message in `f.b`.
1844///
1845/// Field masks are used to specify a subset of fields that should be
1846/// returned by a get operation or modified by an update operation.
1847/// Field masks also have a custom JSON encoding (see below).
1848///
1849/// # Field Masks in Projections
1850///
1851/// When used in the context of a projection, a response message or
1852/// sub-message is filtered by the API to only contain those fields as
1853/// specified in the mask. For example, if the mask in the previous
1854/// example is applied to a response message as follows:
1855///
1856/// ```text
1857/// f {
1858/// a : 22
1859/// b {
1860/// d : 1
1861/// x : 2
1862/// }
1863/// y : 13
1864/// }
1865/// z: 8
1866/// ```
1867///
1868/// The result will not contain specific values for fields x,y and z
1869/// (their value will be set to the default, and omitted in proto text
1870/// output):
1871///
1872/// ```text
1873/// f {
1874/// a : 22
1875/// b {
1876/// d : 1
1877/// }
1878/// }
1879/// ```
1880///
1881/// A repeated field is not allowed except at the last position of a
1882/// paths string.
1883///
1884/// If a FieldMask object is not present in a get operation, the
1885/// operation applies to all fields (as if a FieldMask of all fields
1886/// had been specified).
1887///
1888/// Note that a field mask does not necessarily apply to the
1889/// top-level response message. In case of a REST get operation, the
1890/// field mask applies directly to the response, but in case of a REST
1891/// list operation, the mask instead applies to each individual message
1892/// in the returned resource list. In case of a REST custom method,
1893/// other definitions may be used. Where the mask applies will be
1894/// clearly documented together with its declaration in the API. In
1895/// any case, the effect on the returned resource/resources is required
1896/// behavior for APIs.
1897///
1898/// # Field Masks in Update Operations
1899///
1900/// A field mask in update operations specifies which fields of the
1901/// targeted resource are going to be updated. The API is required
1902/// to only change the values of the fields as specified in the mask
1903/// and leave the others untouched. If a resource is passed in to
1904/// describe the updated values, the API ignores the values of all
1905/// fields not covered by the mask.
1906///
1907/// If a repeated field is specified for an update operation, new values will
1908/// be appended to the existing repeated field in the target resource. Note that
1909/// a repeated field is only allowed in the last position of a `paths` string.
1910///
1911/// If a sub-message is specified in the last position of the field mask for an
1912/// update operation, then new value will be merged into the existing sub-message
1913/// in the target resource.
1914///
1915/// For example, given the target message:
1916///
1917/// ```text
1918/// f {
1919/// b {
1920/// d: 1
1921/// x: 2
1922/// }
1923/// c: \[1\]
1924/// }
1925/// ```
1926///
1927/// And an update message:
1928///
1929/// ```text
1930/// f {
1931/// b {
1932/// d: 10
1933/// }
1934/// c: \[2\]
1935/// }
1936/// ```
1937///
1938/// then if the field mask is:
1939///
1940/// paths: \["f.b", "f.c"\]
1941///
1942/// then the result will be:
1943///
1944/// ```text
1945/// f {
1946/// b {
1947/// d: 10
1948/// x: 2
1949/// }
1950/// c: \[1, 2\]
1951/// }
1952/// ```
1953///
1954/// An implementation may provide options to override this default behavior for
1955/// repeated and message fields.
1956///
1957/// In order to reset a field's value to the default, the field must
1958/// be in the mask and set to the default value in the provided resource.
1959/// Hence, in order to reset all fields of a resource, provide a default
1960/// instance of the resource and set all fields in the mask, or do
1961/// not provide a mask as described below.
1962///
1963/// If a field mask is not present on update, the operation applies to
1964/// all fields (as if a field mask of all fields has been specified).
1965/// Note that in the presence of schema evolution, this may mean that
1966/// fields the client does not know and has therefore not filled into
1967/// the request will be reset to their default. If this is unwanted
1968/// behavior, a specific service may require a client to always specify
1969/// a field mask, producing an error if not.
1970///
1971/// As with get operations, the location of the resource which
1972/// describes the updated values in the request message depends on the
1973/// operation kind. In any case, the effect of the field mask is
1974/// required to be honored by the API.
1975///
1976/// ## Considerations for HTTP REST
1977///
1978/// The HTTP kind of an update operation which uses a field mask must
1979/// be set to PATCH instead of PUT in order to satisfy HTTP semantics
1980/// (PUT must only be used for full updates).
1981///
1982/// # JSON Encoding of Field Masks
1983///
1984/// In JSON, a field mask is encoded as a single string where paths are
1985/// separated by a comma. Fields name in each path are converted
1986/// to/from lower-camel naming conventions.
1987///
1988/// As an example, consider the following message declarations:
1989///
1990/// ```text
1991/// message Profile {
1992/// User user = 1;
1993/// Photo photo = 2;
1994/// }
1995/// message User {
1996/// string display_name = 1;
1997/// string address = 2;
1998/// }
1999/// ```
2000///
2001/// In proto a field mask for `Profile` may look as such:
2002///
2003/// ```text
2004/// mask {
2005/// paths: "user.display_name"
2006/// paths: "photo"
2007/// }
2008/// ```
2009///
2010/// In JSON, the same mask is represented as below:
2011///
2012/// ```text
2013/// {
2014/// mask: "user.displayName,photo"
2015/// }
2016/// ```
2017///
2018/// # Field Masks and Oneof Fields
2019///
2020/// Field masks treat fields in oneofs just as regular fields. Consider the
2021/// following message:
2022///
2023/// ```text
2024/// message SampleMessage {
2025/// oneof test_oneof {
2026/// string name = 4;
2027/// SubMessage sub_message = 9;
2028/// }
2029/// }
2030/// ```
2031///
2032/// The field mask can be:
2033///
2034/// ```text
2035/// mask {
2036/// paths: "name"
2037/// }
2038/// ```
2039///
2040/// Or:
2041///
2042/// ```text
2043/// mask {
2044/// paths: "sub_message"
2045/// }
2046/// ```
2047///
2048/// Note that oneof type names ("test_oneof" in this case) cannot be used in
2049/// paths.
2050///
2051/// ## Field Mask Verification
2052///
2053/// The implementation of any API method which has a FieldMask type field in the
2054/// request should verify the included field paths, and return an
2055/// `INVALID_ARGUMENT` error if any path is unmappable.
2056#[derive(Clone, PartialEq, ::prost::Message)]
2057pub struct FieldMask {
2058 /// The set of field mask paths.
2059 #[prost(string, repeated, tag = "1")]
2060 pub paths: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
2061}
2062/// `Struct` represents a structured data value, consisting of fields
2063/// which map to dynamically typed values. In some languages, `Struct`
2064/// might be supported by a native representation. For example, in
2065/// scripting languages like JS a struct is represented as an
2066/// object. The details of that representation are described together
2067/// with the proto support for the language.
2068///
2069/// The JSON representation for `Struct` is JSON object.
2070#[derive(Clone, PartialEq, ::prost::Message)]
2071pub struct Struct {
2072 /// Unordered map of dynamically typed values.
2073 #[prost(btree_map = "string, message", tag = "1")]
2074 pub fields: ::prost::alloc::collections::BTreeMap<
2075 ::prost::alloc::string::String,
2076 Value,
2077 >,
2078}
2079/// `Value` represents a dynamically typed value which can be either
2080/// null, a number, a string, a boolean, a recursive struct value, or a
2081/// list of values. A producer of value is expected to set one of these
2082/// variants. Absence of any variant indicates an error.
2083///
2084/// The JSON representation for `Value` is JSON value.
2085#[derive(Clone, PartialEq, ::prost::Message)]
2086pub struct Value {
2087 /// The kind of value.
2088 #[prost(oneof = "value::Kind", tags = "1, 2, 3, 4, 5, 6")]
2089 pub kind: ::core::option::Option<value::Kind>,
2090}
2091/// Nested message and enum types in `Value`.
2092pub mod value {
2093 /// The kind of value.
2094 #[derive(Clone, PartialEq, ::prost::Oneof)]
2095 pub enum Kind {
2096 /// Represents a null value.
2097 #[prost(enumeration = "super::NullValue", tag = "1")]
2098 NullValue(i32),
2099 /// Represents a double value.
2100 #[prost(double, tag = "2")]
2101 NumberValue(f64),
2102 /// Represents a string value.
2103 #[prost(string, tag = "3")]
2104 StringValue(::prost::alloc::string::String),
2105 /// Represents a boolean value.
2106 #[prost(bool, tag = "4")]
2107 BoolValue(bool),
2108 /// Represents a structured value.
2109 #[prost(message, tag = "5")]
2110 StructValue(super::Struct),
2111 /// Represents a repeated `Value`.
2112 #[prost(message, tag = "6")]
2113 ListValue(super::ListValue),
2114 }
2115}
2116/// `ListValue` is a wrapper around a repeated field of values.
2117///
2118/// The JSON representation for `ListValue` is JSON array.
2119#[derive(Clone, PartialEq, ::prost::Message)]
2120pub struct ListValue {
2121 /// Repeated field of dynamically typed values.
2122 #[prost(message, repeated, tag = "1")]
2123 pub values: ::prost::alloc::vec::Vec<Value>,
2124}
2125/// `NullValue` is a singleton enumeration to represent the null value for the
2126/// `Value` type union.
2127///
2128/// The JSON representation for `NullValue` is JSON `null`.
2129#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
2130#[repr(i32)]
2131pub enum NullValue {
2132 /// Null value.
2133 NullValue = 0,
2134}
2135impl NullValue {
2136 /// String value of the enum field names used in the ProtoBuf definition.
2137 ///
2138 /// The values are not transformed in any way and thus are considered stable
2139 /// (if the ProtoBuf definition does not change) and safe for programmatic use.
2140 pub fn as_str_name(&self) -> &'static str {
2141 match self {
2142 Self::NullValue => "NULL_VALUE",
2143 }
2144 }
2145 /// Creates an enum from field names used in the ProtoBuf definition.
2146 pub fn from_str_name(value: &str) -> ::core::option::Option<Self> {
2147 match value {
2148 "NULL_VALUE" => Some(Self::NullValue),
2149 _ => None,
2150 }
2151 }
2152}
2153/// A Timestamp represents a point in time independent of any time zone or local
2154/// calendar, encoded as a count of seconds and fractions of seconds at
2155/// nanosecond resolution. The count is relative to an epoch at UTC midnight on
2156/// January 1, 1970, in the proleptic Gregorian calendar which extends the
2157/// Gregorian calendar backwards to year one.
2158///
2159/// All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap
2160/// second table is needed for interpretation, using a [24-hour linear
2161/// smear](<https://developers.google.com/time/smear>).
2162///
2163/// The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By
2164/// restricting to that range, we ensure that we can convert to and from [RFC
2165/// 3339](<https://www.ietf.org/rfc/rfc3339.txt>) date strings.
2166///
2167/// # Examples
2168///
2169/// Example 1: Compute Timestamp from POSIX `time()`.
2170///
2171/// ```text
2172/// Timestamp timestamp;
2173/// timestamp.set_seconds(time(NULL));
2174/// timestamp.set_nanos(0);
2175/// ```
2176///
2177/// Example 2: Compute Timestamp from POSIX `gettimeofday()`.
2178///
2179/// ```text
2180/// struct timeval tv;
2181/// gettimeofday(&tv, NULL);
2182///
2183/// Timestamp timestamp;
2184/// timestamp.set_seconds(tv.tv_sec);
2185/// timestamp.set_nanos(tv.tv_usec * 1000);
2186/// ```
2187///
2188/// Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
2189///
2190/// ```text
2191/// FILETIME ft;
2192/// GetSystemTimeAsFileTime(&ft);
2193/// UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
2194///
2195/// // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
2196/// // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
2197/// Timestamp timestamp;
2198/// timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
2199/// timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
2200/// ```
2201///
2202/// Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
2203///
2204/// ```text
2205/// long millis = System.currentTimeMillis();
2206///
2207/// Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
2208/// .setNanos((int) ((millis % 1000) * 1000000)).build();
2209/// ```
2210///
2211/// Example 5: Compute Timestamp from Java `Instant.now()`.
2212///
2213/// ```text
2214/// Instant now = Instant.now();
2215///
2216/// Timestamp timestamp =
2217/// Timestamp.newBuilder().setSeconds(now.getEpochSecond())
2218/// .setNanos(now.getNano()).build();
2219/// ```
2220///
2221/// Example 6: Compute Timestamp from current time in Python.
2222///
2223/// ```text
2224/// timestamp = Timestamp()
2225/// timestamp.GetCurrentTime()
2226/// ```
2227///
2228/// # JSON Mapping
2229///
2230/// In JSON format, the Timestamp type is encoded as a string in the
2231/// [RFC 3339](<https://www.ietf.org/rfc/rfc3339.txt>) format. That is, the
2232/// format is "{year}-{month}-{day}T{hour}:{min}:{sec}\[.{frac_sec}\]Z"
2233/// where {year} is always expressed using four digits while {month}, {day},
2234/// {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional
2235/// seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
2236/// are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
2237/// is required. A proto3 JSON serializer should always use UTC (as indicated by
2238/// "Z") when printing the Timestamp type and a proto3 JSON parser should be
2239/// able to accept both UTC and other timezones (as indicated by an offset).
2240///
2241/// For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past
2242/// 01:30 UTC on January 15, 2017.
2243///
2244/// In JavaScript, one can convert a Date object to this format using the
2245/// standard
2246/// [toISOString()](<https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString>)
2247/// method. In Python, a standard `datetime.datetime` object can be converted
2248/// to this format using
2249/// [`strftime`](<https://docs.python.org/2/library/time.html#time.strftime>) with
2250/// the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
2251/// the Joda Time's [`ISODateTimeFormat.dateTime()`](<http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D>) to obtain a formatter capable of generating timestamps in this format.
2252#[derive(Clone, Copy, PartialEq, ::prost::Message)]
2253pub struct Timestamp {
2254 /// Represents seconds of UTC time since Unix epoch
2255 /// 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
2256 /// 9999-12-31T23:59:59Z inclusive.
2257 #[prost(int64, tag = "1")]
2258 pub seconds: i64,
2259 /// Non-negative fractions of a second at nanosecond resolution. Negative
2260 /// second values with fractions must still have non-negative nanos values
2261 /// that count forward in time. Must be from 0 to 999,999,999
2262 /// inclusive.
2263 #[prost(int32, tag = "2")]
2264 pub nanos: i32,
2265}